login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296643
T(n,k)=Number of nXk 0..1 arrays with each 1 horizontally, vertically or antidiagonally adjacent to 1, 2 or 4 neighboring 1s.
7
1, 2, 2, 4, 10, 4, 7, 28, 28, 7, 12, 86, 132, 86, 12, 21, 279, 671, 671, 279, 21, 37, 869, 3444, 5696, 3444, 869, 37, 65, 2728, 17558, 49872, 49872, 17558, 2728, 65, 114, 8596, 89613, 430522, 742601, 430522, 89613, 8596, 114, 200, 27004, 457188, 3713779
OFFSET
1,2
COMMENTS
Table starts
...1.....2.......4.........7..........12............21..............37
...2....10......28........86.........279...........869............2728
...4....28.....132.......671........3444.........17558...........89613
...7....86.....671......5696.......49872........430522.........3713779
..12...279....3444.....49872......742601......10781621.......157255466
..21...869...17558....430522....10781621.....263456105......6468185511
..37..2728...89613...3713779...157255466....6468185511....267838310277
..65..8596..457188..32095222..2296958734..158971670482..11100574753607
.114.27004.2333009.277299810.33523275696.3904685293187.459672982178410
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
k=2: a(n) = 3*a(n-1) -a(n-2) +6*a(n-3) -6*a(n-4) +6*a(n-5) -5*a(n-6) +3*a(n-7) -a(n-8)
k=3: [order 22]
k=4: [order 74]
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..0. .1..1..0..0. .1..0..0..1. .0..1..1..1. .0..0..0..1
..0..1..0..1. .1..0..1..1. .1..0..1..0. .1..0..0..0. .1..1..0..1
..0..1..1..0. .0..0..0..1. .1..0..0..0. .1..0..0..1. .0..1..0..0
..1..1..1..0. .1..1..1..0. .1..1..1..0. .1..0..1..0. .0..1..1..0
CROSSREFS
Column 1 is A005251(n+2).
Column 2 is A296380.
Sequence in context: A121623 A267347 A296386 * A295040 A295531 A220259
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 17 2017
STATUS
approved