login
A296387
a(0) = a(1) = 1; a(n) = [x^n] Product_{k=1..n-1} (1 + x^a(k))/(1 - x^a(k)).
1
1, 1, 2, 6, 8, 10, 14, 18, 26, 34, 46, 58, 74, 90, 114, 138, 174, 210, 260, 310, 378, 446, 536, 626, 748, 870, 1034, 1198, 1410, 1622, 1892, 2162, 2510, 2858, 3306, 3754, 4316, 4878, 5576, 6274, 7144, 8014, 9096, 10178, 11508, 12838, 14458, 16078, 18048, 20018, 22410, 24802, 27690, 30578, 34040
OFFSET
0,3
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = -x - 2*x^2 + Product_{n>=1} (1 + x^a(n))/(1 - x^a(n)).
MATHEMATICA
a[n_] := a[n] = SeriesCoefficient[Product[(1 + x^a[k])/(1 - x^a[k]), {k, 1, n - 1}], {x, 0, n}]; a[0] = a[1] = 1; Table[a[n], {n, 0, 54}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 11 2017
STATUS
approved