login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302658
Number of minimal total dominating sets in the wheel graph on n nodes.
0
1, 2, 6, 8, 10, 15, 14, 12, 21, 35, 33, 37, 52, 63, 83, 116, 136, 162, 228, 309, 388, 506, 667, 865, 1155, 1547, 2010, 2629, 3509, 4654, 6138, 8132, 10750, 14195, 18842, 25000, 33041, 43719, 57957, 76769, 101680, 134731, 178407, 236240, 313052, 414782, 549336
OFFSET
2,2
COMMENTS
Wheel graphs are defined for n>=4; extended to n=2 using formula. - Andrew Howroyd, Apr 15 2018
LINKS
Eric Weisstein's World of Mathematics, Total Dominating Set
Eric Weisstein's World of Mathematics, Wheel Graph
FORMULA
a(n) = A300738(n-1) + (n-1). - Andrew Howroyd, Apr 15 2018
G.f.: x^2*(1 + 3*x^2 - 3*x^3 - x^4 - x^5 - 8*x^6 - 2*x^7 + 8*x^8 + 11*x^9 - 9*x^10)/((-1 + x)^2*(1 - x^3 - x^4 - x^5 - x^6 + x^8 + x^9)).
MATHEMATICA
Table[n - 1 + RootSum[-1 - # + #^3 &, #^(n - 1) &] + (1 - (-1)^n) RootSum[-1 + #^2 + #^3 &, #^((n - 1)/2) &], {n, 2, 50}]
LinearRecurrence[{2, -1, 1, -1, 0, 0, -1, 0, 1, 1, -1}, {1, 2, 6, 8, 10, 15, 14, 12, 21, 35, 33}, 50]
CoefficientList[Series[(1 + 3 x^2 - 3 x^3 - x^4 - x^5 - 8 x^6 - 2 x^7 + 8 x^8 + 11 x^9 - 9 x^10)/((-1 + x)^2 (1 - x^3 - x^4 - x^5 - x^6 + x^8 + x^9)), {x, 0, 50}], x]
PROG
(PARI) {my(v=concat([0, 0], Vec((3 + 4*x + 5*x^2 + 6*x^3 - 8*x^5 - 9*x^6)/((1 - x^2 - x^3)*(1 + x^2 - x^6)) + O(x^50)))); vector(#v, i, v[i]+i)} \\ Andrew Howroyd, Apr 15 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Apr 11 2018
EXTENSIONS
a(2)-a(3) and terms a(20) and beyond from Andrew Howroyd, Apr 15 2018
STATUS
approved