login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302660
a(n) = (prime(n) mod 9) + (prime(n) mod 10).
1
4, 6, 10, 14, 3, 7, 15, 10, 8, 11, 5, 8, 6, 10, 9, 11, 14, 8, 11, 9, 4, 16, 5, 17, 14, 3, 7, 15, 10, 8, 8, 6, 9, 13, 14, 8, 11, 4, 12, 5, 17, 2, 3, 7, 15, 10, 5, 10, 9, 13, 11, 14, 8, 9, 12, 5, 17, 2, 14, 3, 7, 8, 8, 6, 10, 9, 8, 11, 12, 16, 5, 17, 14, 7, 10, 8, 11, 8, 6, 13, 14, 8, 9, 4, 16, 5, 17, 14, 3, 7, 15, 11, 8, 6, 13
OFFSET
1,1
COMMENTS
The sum (prime(n) mod 9 + prime(n) mod 10) gives numbers between 2 and 17.
For large n the distribution is displayed in the diagram below.
.
^
|
3y| .. . . . . . . . . .. o o
| /:\ /:\
| / : \ / : \
2y| .. . . . . . o / : o--o : \ o
| /:\ / : : : : \ /:\
| / | \ / : | | : \ / | \
y| .. o--o--o : o--o : : : : o--o : o--o--o
| /. . . | . . : | | : . . | . . .\
| / . . . : . . : : : : . . : . . . \
|__o__o__o__o__o__o__o__o__o__o__o__o__o__o__o__o__o__o__\
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 /
.
If y is the quantity for {2, 3, 4, 6, 7, 12, 13, 15, 16, 17} (same)
then 2y is the quantity of {5, 9, 10, 14} (same) and
3y is the quantity for {8, 11} (same).
Example: For primes less than 10^10, the distribution of frequencies of a(n) from 2 to 17 is {18960677, 18960726, 18960712, 37920181, 18959991, 18960427, 56880630, 37923467, 37921201, 56882003, 18960991, 18960869, 37920879, 18960270, 18959802, 18959685}.
LINKS
FORMULA
a(n) = A038194(n) + A007652(n).
EXAMPLE
For n=7, prime(7) = 17, 17 mod 9 = 8 and 17 mod 10 = 7. So a(7) = 8 + 7 = 15.
MAPLE
map(t -> (t mod 9)+(t mod 10), [seq(ithprime(i), i=1..100)]); # Robert Israel, Jun 10 2018
MATHEMATICA
Array[Mod[#, 9] + Mod[#, 10] &@ Prime@ # &, 95] (* Michael De Vlieger, Apr 21 2018 *)
PROG
(PARI) {forprime(n = 2, 1000, s = n%9 + n%10; print1(s", "))}
(Magma) [(NthPrime(n) mod 9) + (NthPrime(n) mod 10): n in [1..100]]; // Vincenzo Librandi, Jun 10 2018
CROSSREFS
Sequence in context: A079524 A141740 A088135 * A255005 A376379 A137699
KEYWORD
nonn,easy
AUTHOR
Dimitris Valianatos, Apr 11 2018
STATUS
approved