login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (prime(n) mod 9) + (prime(n) mod 10).
1

%I #31 Sep 08 2022 08:46:21

%S 4,6,10,14,3,7,15,10,8,11,5,8,6,10,9,11,14,8,11,9,4,16,5,17,14,3,7,15,

%T 10,8,8,6,9,13,14,8,11,4,12,5,17,2,3,7,15,10,5,10,9,13,11,14,8,9,12,5,

%U 17,2,14,3,7,8,8,6,10,9,8,11,12,16,5,17,14,7,10,8,11,8,6,13,14,8,9,4,16,5,17,14,3,7,15,11,8,6,13

%N a(n) = (prime(n) mod 9) + (prime(n) mod 10).

%C The sum (prime(n) mod 9 + prime(n) mod 10) gives numbers between 2 and 17.

%C For large n the distribution is displayed in the diagram below.

%C .

%C ^

%C |

%C 3y| .. . . . . . . . . .. o o

%C | /:\ /:\

%C | / : \ / : \

%C 2y| .. . . . . . o / : o--o : \ o

%C | /:\ / : : : : \ /:\

%C | / | \ / : | | : \ / | \

%C y| .. o--o--o : o--o : : : : o--o : o--o--o

%C | /. . . | . . : | | : . . | . . .\

%C | / . . . : . . : : : : . . : . . . \

%C |__o__o__o__o__o__o__o__o__o__o__o__o__o__o__o__o__o__o__\

%C 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 /

%C .

%C If y is the quantity for {2, 3, 4, 6, 7, 12, 13, 15, 16, 17} (same)

%C then 2y is the quantity of {5, 9, 10, 14} (same) and

%C 3y is the quantity for {8, 11} (same).

%C Example: For primes less than 10^10, the distribution of frequencies of a(n) from 2 to 17 is {18960677, 18960726, 18960712, 37920181, 18959991, 18960427, 56880630, 37923467, 37921201, 56882003, 18960991, 18960869, 37920879, 18960270, 18959802, 18959685}.

%H Robert Israel, <a href="/A302660/b302660.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A038194(n) + A007652(n).

%e For n=7, prime(7) = 17, 17 mod 9 = 8 and 17 mod 10 = 7. So a(7) = 8 + 7 = 15.

%p map(t -> (t mod 9)+(t mod 10), [seq(ithprime(i),i=1..100)]); # _Robert Israel_, Jun 10 2018

%t Array[Mod[#, 9] + Mod[#, 10] &@ Prime@ # &, 95] (* _Michael De Vlieger_, Apr 21 2018 *)

%o (PARI) {forprime(n = 2, 1000, s = n%9 + n%10; print1(s", "))}

%o (Magma) [(NthPrime(n) mod 9) + (NthPrime(n) mod 10): n in [1..100]]; // _Vincenzo Librandi_, Jun 10 2018

%Y Cf. A007652, A038194.

%K nonn,easy

%O 1,1

%A _Dimitris Valianatos_, Apr 11 2018