login
A358428
Numbers k such that k^2 + 1, k^2 + 2 and k^2 + 3 are all squarefree.
0
2, 6, 8, 10, 16, 20, 26, 28, 30, 34, 36, 42, 44, 46, 48, 52, 54, 56, 60, 62, 64, 66, 72, 74, 78, 80, 84, 88, 90, 92, 96, 98, 100, 106, 108, 114, 116, 120, 126, 128, 134, 136, 138, 142, 144, 146, 150, 152, 154, 156, 160, 162, 164, 170, 172, 174, 178, 180, 186, 188, 190, 192, 196, 198, 200
OFFSET
1,1
COMMENTS
Wongcharoenbhorn proves that this sequence is infinite and gives an infinite product for its density; its value is about 0.313992945491, so a(n) ~ kn with k around 3.18478492705. - Charles R Greathouse IV, Dec 11 2022
LINKS
W. Wongcharoenbhorn, Three consecutive near-square squarefree numbers, arXiv:2211.07237 [math.NT], 2022.
MATHEMATICA
Select[Range[200], And @@ SquareFreeQ /@ (#^2 + {1, 2, 3}) &] (* Amiram Eldar, Nov 15 2022 *)
PROG
(PARI) isok(k) = issquarefree(k^2+1) && issquarefree(k^2+2) && issquarefree(k^2+3);
CROSSREFS
Subsequence of A335962.
Sequence in context: A296387 A302658 A324175 * A084909 A038619 A118257
KEYWORD
nonn
AUTHOR
Michel Marcus, Nov 15 2022
STATUS
approved