login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358426
a(n) is the least prime p such that (p^2 - 6)/5^n is prime.
2
3, 11, 41, 359, 109, 13859, 67391, 276359, 10036141, 11057609, 511057609, 4528004891, 35817391, 194860036141, 154261057609, 1143030588859, 6669469411141, 35444788401359, 349076695973641, 982316442067391, 3805192418629891, 7047685094411141, 190153153844411141, 4915609391637379891
OFFSET
0,1
LINKS
FORMULA
a(n)^2-6 = 5^n * A358422(n).
EXAMPLE
a(3) = 359 because 359^2 - 6 = 128875 = 5^3 * 1031 where 359 and 1031 are prime, and no smaller prime works.
MAPLE
f:= proc(n) local v, a, b, k, p, q;
v:= 5^n;
a:= numtheory:-msqrt(6, v);
if a < v/2 then b:= v-a
else b:= a; a:= v-a
fi;
for k from 0 do
for q in [k*v+a, k*v+b] do
if isprime(q) then
p:= (q^2-6)/v;
if isprime(p) then return q fi;
fi
od od
end proc:
map(f, [$0..30]);
CROSSREFS
Cf. A358422.
Sequence in context: A149067 A018962 A102417 * A096147 A225431 A359248
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Nov 15 2022
STATUS
approved