login
A358422
a(n) is the least prime p such that 5^n * p + 6 is the square of a prime.
2
3, 23, 67, 1031, 19, 61463, 290659, 977591, 257853763, 62602607, 26744819683, 419897923439, 5254699, 31105379274647, 3898814282899, 42812012202143, 291516070141267, 1646700822288287, 31943436447743683, 50590939472510999, 151828450171141747, 104165257122907367, 15165857481926132731
OFFSET
0,1
LINKS
FORMULA
5^n*a(n) = A358426(n)^2 - 6.
EXAMPLE
a(3) = 1031 because 5^3 * 1031 + 6 = 128881 = 359^2 where 1031 and 359 are prime, and no smaller prime works.
MAPLE
f:= proc(n) local v, a, b, k, p, q;
v:= 5^n;
a:= numtheory:-msqrt(6, v);
if a < v/2 then b:= v-a
else b:= a; a:= v-a
fi;
for k from 0 do
for q in [k*v+a, k*v+b] do
if isprime(q) then
p:= (q^2-6)/v;
if isprime(p) then return p fi;
fi
od od
end proc:
map(f, [$0..30]);
CROSSREFS
Cf. A358426.
Sequence in context: A299311 A300112 A183332 * A196325 A003531 A121984
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Nov 15 2022
STATUS
approved