OFFSET
1,2
EXAMPLE
a(2)=3 because there are 3 solutions to equation x+y^2+z^3=2^4 with all distinct {x,y,z}={6,3,1},{7,1,2},{11,2,1}.
a(3)=23 because there are 23 solutions to equation x+y^2+z^3=3^4 with all distinct {x, y, z}={5, 7, 3}, {8, 3, 4}, {9, 8, 2}, {13, 2, 4}, {16, 1, 4}, {16, 8, 1}, {18, 6, 3}, {24, 7, 2}, {29, 5, 3}, {31, 7, 1}, {37, 6, 2}, {38, 4, 3}, {44, 6, 1}, {48, 5, 2}, {50, 2, 3}, {53, 1, 3}, {55, 5, 1}, {57, 4, 2}, {64, 3, 2}, {64, 4, 1}, {71, 3, 1}, {72, 1, 2}, {76, 2, 1}.
MAPLE
A121984 := proc(n) local res, x, y, z, n4 ; res := 0 ; n4 := n^4 ; for y from 1 to n^2 do for z from 1 to n^2 do x := n4-y^2-z^3 ; if x > 0 and x <> y and x <> z and y<> z then res := res+1 ; fi ; if x < 0 then break ; fi ; od ; od ; RETURN(res) ; end ; for n from 1 to 60 do printf("%d, ", A121984(n)) ; od ; # R. J. Mathar, Jan 13 2007
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 09 2006
EXTENSIONS
More terms from R. J. Mathar, Jan 13 2007
STATUS
approved