login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121985
Denominator of PolyLog(-n, 1/n).
4
12, 1, 8, 81, 512, 15625, 11664, 5764801, 8388608, 387420489, 78125000, 3138428376721, 5159780352, 3937376385699289, 21703138331168, 1081219482421875, 144115188075855872, 14063084452067724991009
OFFSET
1,1
COMMENTS
PolyLog(n,z) = Sum_{k>=1} z^k/k^n. PolyLog(-n, 1/n) = Sum_{k>=1} k^n/n^k for n > 1. Numerators of PolyLog(-n, 1/n) are listed in A121376(n) = {-1, 6, 33, 380, 3535, 189714, 285929, ...}. a(p+1) = p^(p+1) for prime p. a(p^k+1) = p^( k*p^k + 2*k - (p^k - 1)/(p - 1) ) for prime p and integer k > 0. Prime divisors of a(n) are the same as prime divisors of (n-1).
It appears that for most squarefree (n-1) if q is the largest prime divisor of (n-1) then q^(n - (n-1)/q + 1) divides a(n).
PolyLog(-n, 1/n) = A121376(n) / A121985(n) = (Sum_{k=0..n} Eulerian(n,k) * n^(n-k+1)) / (n-1)^(n+1) = n*A122778(n) = (Sum_{k=0..n} Eulerian(n,k) * n^k) / (n-1)^(n+1) = A122020(n) for n > 1.
LINKS
Eric Weisstein's World of Mathematics, Polylogarithm.
Eric Weisstein's World of Mathematics, Eulerian number
FORMULA
a(n) = denominator(PolyLog(-n, 1/n)).
a(n) = denominator((-1)^(n+1) * PolyLog(-n, n)).
EXAMPLE
PolyLog(-n, 1/n) begins -1/12, 6, 33/8, 380/81, 3535/512, 189714/15625, ...
a(3) = 2^3;
a(4) = 3^4;
a(200) = 199^200;
a(257) = 2^1809;
a(290) = 17^564;
a(319) = 2^7 * 3^164 * 53^314, where 2*3*53 = 318 = 319 - 1 and 314 = 319 - 319/53 + 1;
a(709) = 2^716 * 3^360 * 59^698;
a(710) = 709^710.
MATHEMATICA
Join[{12}, Table[Denominator[PolyLog[ -n, 1/n]], {n, 2, 30}]]
PROG
(PARI) a(n)=denominator(polylog(-n, 1/n)) \\ Charles R Greathouse IV, Jul 14 2014
CROSSREFS
Cf. A121376 = numerators.
Sequence in context: A085094 A010214 A318489 * A245839 A068329 A334074
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Sep 10 2006, Sep 14 2006
STATUS
approved