login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121376
Numerator of PolyLog[ -n, 1/n ].
4
-1, 6, 33, 380, 3535, 189714, 285929, 319735800, 1160703963, 145739620510, 86294277091, 10914811650686580, 60229285882649, 163637596919801624970, 3392462704290802545, 669084376596453009616, 370468452361579892135179, 157145213515550643044429571846
OFFSET
1,2
COMMENTS
PolyLog[n,z] = Sum[ z^k/k^n, {k,1,Infinity} ]. PolyLog[ -n,1/n] = Sum[ k^n/n^k, {k,1,Infinity}] for n>1. n divides a(n). p^k divides a(p^k) for all prime p and integer k>0. p^k divides a(p^k-1) for prime p>2 and integer k>0.
LINKS
Eric Weisstein's World of Mathematics, Polylogarithm.
FORMULA
a(n) = Numerator[ PolyLog[ -n, 1/n ] ]. For n>1 a(n) = Numerator[ (-1)^n * PolyLog[ -n, n ] ].
For n>1, a(n) is the numerator of n*A122778(n)/(n-1)^(n+1) = Sum[k=0..n] A(n,k)*n^(k+1)/(n-1)^(n+1). For n>1, a(n) = n * A122778(n)/gcd(A122778(n),(n-1)^(n+1)). - Max Alekseyev, Sep 11 2006
EXAMPLE
PolyLog[ -n,1/n] begins -1/12, 6, 33/8, 380/81, 3535/512, 189714/15625, ...
MATHEMATICA
Numerator[Table[PolyLog[ -n, 1/n], {n, 1, 40}]]
PROG
(PARI) a(n)=numerator(polylog(-n, 1/n)) \\ Charles R Greathouse IV, Jul 14 2014
CROSSREFS
Cf. A119758.
Sequence in context: A306182 A354888 A358595 * A354890 A046707 A337825
KEYWORD
frac,sign
AUTHOR
Alexander Adamchuk, Sep 06 2006
STATUS
approved