login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337825
a(0) = 0; a(n) = n^3 - (1/n) * Sum_{k=1..n-1} binomial(n,k)^2 * (n-k)^3 * k * a(k).
2
0, 1, 6, -33, -512, 19405, 181116, -45817541, 771776384, 280415588121, -23151651942500, -3217963989270569, 816268626535923936, 38087192839910816485, -43268389662374707851552, 2822720920753640236252875, 3297662826737476255127428096, -833876355494162903256716734927
OFFSET
0,3
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^2 = log(1 + x * (BesselI(0,2*sqrt(x)) + sqrt(x) * BesselI(1,2*sqrt(x)))).
Sum_{n>=0} a(n) * x^n / (n!)^2 = log(1 + Sum_{n>=1} n^3 * x^n / (n!)^2).
MATHEMATICA
a[0] = 0; a[n_] := a[n] = n^3 - (1/n) * Sum[Binomial[n, k]^2 (n - k)^3 k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 17}]
nmax = 17; CoefficientList[Series[Log[1 + x (BesselI[0, 2 Sqrt[x]] + Sqrt[x] BesselI[1, 2 Sqrt[x]])], {x, 0, nmax}], x] Range[0, nmax]!^2
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 24 2020
STATUS
approved