login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337590 a(0) = 0; a(n) = n - (1/n) * Sum_{k=1..n-1} binomial(n,k)^2 * (n-k) * k * a(k). 2
0, 1, 0, -3, 28, -215, -174, 90223, -3840472, 103719537, 429704110, -357346077869, 35100093531900, -2005608652057595, -24108041118593418, 27881407632242902515, -4876442148527153942384, 474102062424164433715937, 12637408141631813073125094, -18867461801192524662360616421 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..19.

FORMULA

Sum_{n>=0} a(n) * x^n / (n!)^2 = log(1 + sqrt(x) * BesselI(1,2*sqrt(x))).

Sum_{n>=0} a(n) * x^n / (n!)^2 = log(1 + Sum_{n>=1} n * x^n / (n!)^2).

MATHEMATICA

a[0] = 0; a[n_] := a[n] = n - (1/n) Sum[Binomial[n, k]^2 (n - k) k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 19}]

nmax = 19; CoefficientList[Series[Log[1 + Sqrt[x] BesselI[1, 2 Sqrt[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2

CROSSREFS

Cf. A002190, A009306, A336227.

Sequence in context: A091120 A045737 A003466 * A092637 A338689 A094296

Adjacent sequences: A337587 A337588 A337589 * A337591 A337592 A337593

KEYWORD

sign

AUTHOR

Ilya Gutkovskiy, Sep 02 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 23:44 EST 2022. Contains 358485 sequences. (Running on oeis4.)