login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003466
Number of minimal covers of an n-set that have exactly one point which appears in more than one set in the cover.
(Formerly M3117)
2
0, 3, 28, 210, 1506, 10871, 80592, 618939, 4942070, 41076508, 355372524, 3198027157, 29905143464, 290243182755, 2920041395248, 30414515081650, 327567816748638, 3643600859114439, 41809197852127240, 494367554679088923, 6017481714095327410
OFFSET
2,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. Hearne and C. G. Wagner, Minimal covers of finite sets, Discr. Math. 5 (1973), 247-251.
FORMULA
a(n) = n * Sum_{k=1..n-1} (2^k-k-1) * S2(n-1,k) where S2(n,k) are the Stirling numbers of the second kind. - Sean A. Irvine, May 20 2015
a(n) = n * (A001861(n-1) - A005493(n-2) - A000110(n-1)). - Robert Israel, May 21 2015
MAPLE
seq(n*add((2^k-k-1)*Stirling2(n-1, k), k=1..n-1), n = 2 .. 30); # Robert Israel, May 21 2015
MATHEMATICA
nn = 20; Range[0, nn]! CoefficientList[Series[Sum[ (Exp[x] - 1)^n/n! (2^n - n - 1) x, {n, 0, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Feb 18 2017 *)
a[2]=0; a[3]=3; a[4]=28; a[n_]:=n*Sum[(2^k-k-1)* StirlingS2[n-1, k], {k, 1, n-1}]; Table[a[n], {n, 2, 22}] (* Indranil Ghosh, Feb 20 2017 *)
CROSSREFS
Cf. A046165.
Column k=1 of A282575.
Sequence in context: A278183 A091120 A045737 * A337590 A092637 A338689
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, May 20 2015
Title clarified by Geoffrey Critzer, Feb 18 2017
STATUS
approved