login
A003467
Number of minimal covers of an n-set that cover exactly 3 points uniquely.
(Formerly M3951)
1
5, 28, 190, 1340, 9065, 57512, 344316, 1966440, 10813935, 57672340, 299893594, 1526727748, 7633634645, 37580965520, 182536112120, 876173330832, 4161823312731, 19585050873180, 91396904062870, 423311976698380, 1947235092796609, 8901646138480568
OFFSET
3,1
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. Hearne and C. G. Wagner, Minimal covers of finite sets, Discr. Math. 5 (1973), 247-251.
Index entries for linear recurrences with constant coefficients, signature (20, -166, 740, -1921, 2960, -2656, 1280, -256).
FORMULA
G.f.: x^3*(1 + (1-4*x)^(-4) + 3*(1-x)^(-4)). - corrected by Vaclav Kotesovec, Oct 04 2012
Recurrence (for n>3): 4*(n-1)*n*a(n-2)-5*(n-4)*n*a(n-1)+(n-4)*(n-3)*a(n)=0. - Vaclav Kotesovec, Oct 04 2012
For n>3, a(n) = n*(n-1)*(n-2)*(4^n+192)/384. - Vaclav Kotesovec, Oct 26 2012
MATHEMATICA
Table[SeriesCoefficient[x^3*(1+(1-4*x)^(-4)+3*(1-x)^(-4)), {x, 0, n}], {n, 3, 25}] (* Vaclav Kotesovec, Oct 04 2012 *)
PROG
(Magma) [5] cat [n*(n-1)*(n-2)*(4^n+192)/384: n in [4..30]]; // Vincenzo Librandi, May 03 2013
CROSSREFS
Cf. A035347.
Sequence in context: A189487 A367049 A024065 * A240770 A318364 A064898
KEYWORD
nonn,easy
EXTENSIONS
Name clarified by Geoffrey Critzer, Apr 23 2017
STATUS
approved