login
A189487
Expansion of e.g.f. exp(x*exp(x) + x^2*exp(2*x)).
1
1, 1, 5, 28, 185, 1456, 13267, 135598, 1528193, 18805240, 250522451, 3585332554, 54774501025, 888739031116, 15249006695483, 275641537989766, 5231788966650113, 103968303762747472, 2157673505603964643, 46656574558459795522, 1049037051211541521121
OFFSET
0,3
LINKS
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = n!*sum(m=1..n, sum(k=m..n, (k^(n-k)*binomial(m,k-m))/(n-k)!)/m!), n>0, a(0)=1.
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[x Exp[x]+x^2 Exp[2x]], {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Sep 22 2011 *)
PROG
(Maxima)
a(n):=n!*sum(sum((k^(n-k)*binomial(m, k-m))/(n-k)!, k, m, n)/m!, m, 1, n);
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(x)+x^2*exp(2*x)))) \\ Seiichi Manyama, Jul 17 2023
CROSSREFS
Cf. A060905.
Sequence in context: A331797 A123776 A070779 * A367049 A024065 A003467
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Apr 23 2011
EXTENSIONS
More terms from Harvey P. Dale, Sep 22 2011
STATUS
approved