login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282575
Triangular array read by rows. T(n,k) is the number of minimal covers of an n-set with exactly k points that are in more than one set of the cover, n>=0, 0<=k<=max(0,n-2).
3
1, 1, 2, 5, 3, 15, 28, 6, 52, 210, 190, 10, 203, 1506, 3360, 1340, 15, 877, 10871, 48321, 60270, 9065, 21, 4140, 80592, 636300, 1820056, 1132880, 57512, 28, 21147, 618939, 8081928, 45455676, 76834926, 21067452, 344316, 36, 115975, 4942070, 101684115, 1027544400, 3860929170, 3406410252, 377190240, 1966440, 45
OFFSET
0,3
LINKS
T. Hearne and C. G. Wagner, Minimal covers of finite sets, Discr. Math. 5 (1973), 247-251.
FORMULA
E.g.f.: (exp(x) - 1)^n/n!*exp(y*(2^n - n - 1)*x).
EXAMPLE
Triangle T(n,k) begins:
: 1;
: 1;
: 2;
: 5, 3;
: 15, 28, 6;
: 52, 210, 190, 10;
: 203, 1506, 3360, 1340, 15;
: 877, 10871, 48321, 60270, 9065, 21;
: 4140, 80592, 636300, 1820056, 1132880, 57512, 28;
MAPLE
T:= (n, k)-> binomial(n, k)*add(Stirling2(n-k, j)*(2^j-j-1)^k, j=0..n-k):
seq(seq(T(n, k), k=0..max(0, n-2)), n=0..12); # Alois P. Heinz, Feb 18 2017
MATHEMATICA
nn = 8; Drop[Map[Select[#, # > 0 &] &, Range[0, nn]! CoefficientList[Series[Sum[ (Exp[x] - 1)^n/n! Exp[y (2^n - n - 1) x], {n, 0, nn}], {x, 0, nn}], {x, y}]], 1] // Grid
CROSSREFS
Cf. A035348. Row sums A046165. Column k=0 A000110. Column k=1 A003466.
Mirrored triangle gives A035347.
Sequence in context: A243066 A368316 A181921 * A002565 A063703 A109619
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Feb 18 2017
STATUS
approved