OFFSET
1,2
COMMENTS
Odd orders of finite abelian groups that appear as the group of units in a commutative ring (Chebolu and Lockridge, see A296241). - Jonathan Sondow, Dec 15 2017
Actually, the Chebolu and Lockridge paper states that this sequence gives all odd numbers that are possible numbers of units in a (commutative or non-commutative) ring (Ditor's theorem). Concretely, if k = (2^(e_1)-1)*(2^(e_2)-1)*...(2^(e_r)-1) is a term, let R = (F_2)^s X F_(2^(e_1)) X F_(2^(e_2)) X ... X F_(2^(e_r)) for s >= 0, then the number of units in R is k. - Jianing Song, Dec 23 2021
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..10000
Sunil K. Chebolu and Keir Lockridge. How many units can a commutative ring have?, arXiv preprint arXiv:1701.02341 [math.AC], 2017. See Th. 8.
EXAMPLE
63 = 1*3^3*7, 81 = 1*3^4, 93 = 1*3*31, 105 = 1*7*15, 41013 = 1*3^3*7^2*31.
MAPLE
d:= 15: # for terms < 2^d
N:= 2^d:
S:= {1}:
for m from 2 to d do
r:= 2^m-1;
k:= ilog[r](N);
V:= S;
for i from 1 to k do
V:= select(`<`, map(`*`, V, r), N);
S:= S union V
od;
od:
sort(convert(S, list)); # Ridouane Oudra, Sep 14 2021
MATHEMATICA
lmt = 2500; a = b = Array[2^# - 1 &, Floor@ Log2@ lmt]; k = 2; While[k < Length@ a, e = 1; While[e < Floor@ Log[ a[[k]], lmt], b = Union@ Join[b, Select[ a[[k]]^e*b, # < 1 + lmt &]]; e++]; k++]; b (* Robert G. Wilson v, Feb 23 2017 *)
PROG
(PARI) forstep(x=1, 1000000, 2, t=x; forstep(n=20, 2, -1, m=2^n-1; while(t%m==0, t=t\m)); if(t==1, print1(x, ", "))) \\ Dmitry Petukhov, Feb 23 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Ivashenko, Feb 18 2017
EXTENSIONS
More terms from Michel Marcus, Feb 23 2017
Definition changed by David A. Corneth, Mar 12 2017
STATUS
approved