The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261524 Odd numbers n such that degree(gcd( 1 + x^n, 1 + (1+x)^n )) > 1, where the polynomials are over GF(2). 5
 3, 7, 9, 15, 21, 27, 31, 33, 35, 39, 45, 49, 51, 57, 63, 69, 73, 75, 77, 81, 85, 87, 91, 93, 99, 105, 111, 117, 119, 123, 127, 129, 133, 135, 141, 147, 153, 155, 159, 161, 165, 171, 175, 177, 183, 189, 195, 201, 203, 207, 213, 217, 219, 225, 231, 237, 243, 245, 249, 255, 259, 261, 267, 273, 279, 285, 287, 291, 297, 301 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS From the Golomb/Lee reference: "Theorem 7 (Welch’s Criterion): For any odd integer t, the irreducible polynomials of primitivity t divide trinomials iff gcd( 1 + x^n, 1 + (1+x)^n ) has degree greater than 1." All Mersenne numbers (A000225) >= 3 are terms, as all primitive polynomials (over GF(2)) divide some trinomial. All numbers of the form (2j-1)*(2^k-1); j>=1, k>=2 (A261871), are in the sequence. - Bob Selcoe, Sep 03 2015 From Robert Israel, Sep 03 2015: (Start) If n is in the sequence, then so is every odd multiple of n, because 1+x^n divides 1+x^(k*n) and 1+(1+x)^n divides 1+(1+x)^(k*n). The first few members of the sequence that are not multiples of other members are 3, 7, 31, 73, 85, 127, 2047, 3133, 4369, 8191, 11275 (see A261862). (End) LINKS Joerg Arndt, Table of n, a(n) for n = 1..23300 Solomon W. Golomb, Pey-Feng Lee, Irreducible Polynomials Which Divide Trinomials over GF(2), IEEE Transactions on Information Theory, vol.53, no.2, pp.768-774 (February-2007). MAPLE filter:= proc(n) degree(Gcd(1+x^n, 1+(1+x)^n) mod 2)>1 end proc: select(filter, [2*i+1 \$ i=1..200]); # Robert Israel, Sep 03 2015 MATHEMATICA okQ[n_] := Exponent[PolynomialGCD[1+x^n, 1+(1+x)^n, Modulus -> 2], x] > 1; Select[Range[1, 301, 2], okQ] (* Jean-François Alcover, Apr 02 2019 *) PROG (PARI) W(n)=my(e=Mod(1, 2)); poldegree(gcd(e*(1+x^n), e*(1+(1+x)^n))) > 1; forstep(n=1, 301, 2, if( W(n) , print1(n, ", ") ) ); (Sage) x = polygen(GF(2), 'x') [n for n in range(1, 10^3, 2) if gcd( 1+x^n, 1+(1+x)^n ).degree() > 1] # Joerg Arndt, Sep 08 2015 CROSSREFS Cf. A261871, A261862. Note that A191131, A261524, A261871, and A282572 are very similar and easily confused with each other. Sequence in context: A099204 A219608 A070993 * A261871 A191131 A282572 Adjacent sequences:  A261521 A261522 A261523 * A261525 A261526 A261527 KEYWORD nonn AUTHOR Joerg Arndt, Aug 23 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 04:23 EDT 2020. Contains 337264 sequences. (Running on oeis4.)