login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045737
Number of nonroot branch nodes in all noncrossing rooted trees on n nodes on a circle.
2
0, 0, 3, 28, 210, 1470, 9996, 67032, 446292, 2960100, 19594575, 129585456, 856703848, 5663913528, 37454912040, 247778648880, 1639890119016, 10858731869160, 71939098633185, 476841658085100, 3162310375905450
OFFSET
2,3
FORMULA
a(n) = 7*(n-1)*binomial(3n-6, n-4)/(2n-1).
G.f.: g^2*(2*g-3)/((1-3*g)*(g-1)^3) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011
a(n) = Sum_{k=0..ceiling(n/2)-1} k*A101431(n, k). - Andrew Howroyd, Nov 17 2017
D-finite with recurrence +2*(2*n-1)*(n-4)*a(n) -3*(3*n-7)*(3*n-8)*a(n-1)=0. - R. J. Mathar, Jul 26 2022
MATHEMATICA
Table[7(n-1) Binomial[3n-6, n-4]/(2n-1), {n, 2, 30}] (* Harvey P. Dale, Nov 01 2017 *)
PROG
(PARI) a(n) = 7*(n-1)*binomial(3*n-6, n-4)/(2*n-1); \\ Andrew Howroyd, Nov 11 2017
(PARI) \\ here b(n) is x^2 * g.f. of A006013.
b(n)=serreverse(x - 2*x^2 + x^3 + O(x^n));
s(n)={(g->g^2*(2*g-3)/((1-3*g)*(g-1)^3))(b(n)) + O(x^n)}
concat([0, 0], Vec(s(25))) \\ Andrew Howroyd, Nov 11 2017
CROSSREFS
Sequence in context: A356975 A278183 A091120 * A003466 A337590 A092637
KEYWORD
nonn
STATUS
approved