login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045738 Number of branches in all noncrossing rooted trees on n nodes on a circle. 2
1, 4, 24, 148, 925, 5838, 37128, 237576, 1527867, 9867000, 63946740, 415683216, 2709186844, 17697136408, 115833872400, 759517409424, 4987999112007, 32804320226580, 216018805979760, 1424151150922500, 9398957079664845, 62090203617715350, 410536632908307360 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

LINKS

Andrew Howroyd, Table of n, a(n) for n = 2..200

Index entries for sequences related to rooted trees

FORMULA

a(n) = binomial(3n-3, n-2) - 2*binomial(3n-6, n-3).

G.f.: (2*g^3-4*g^2+2*g-1)/((1-3*g)*(g-1)^3) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011

D-finite with recurrence +2*(2*n-1)*(n-2)*a(n) +(-43*n^2+169*n-160)*a(n-1) +4*(31*n^2-196*n+292)*a(n-2) -12*(3*n-13)*(3*n-14)*a(n-3)=0. - R. J. Mathar, Jul 26 2022

PROG

(PARI) a(n) = binomial(3*n-3, n-2) - 2*binomial(3*n-6, n-3); \\ Andrew Howroyd, Nov 12 2017

(PARI) \\ here b(n) is x^2 * g.f. of A006013.

b(n)={serreverse(x-2*x^2+x^3 + O(x^n))}

s(n)={(g->(2*g^3-4*g^2+2*g-1)/((1-3*g)*(g-1)^3))(b(n)) + O(x^n)}

Vec(s(25)) \\ Andrew Howroyd, Nov 12 2017

CROSSREFS

Sequence in context: A072949 A104531 A225050 * A215708 A192806 A347915

Adjacent sequences: A045735 A045736 A045737 * A045739 A045740 A045741

KEYWORD

nonn

AUTHOR

Emeric Deutsch

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 06:59 EST 2022. Contains 358422 sequences. (Running on oeis4.)