login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072949
Number of permutations p of {1,2,3,...,n} such that Sum_{k=1..n} abs(k-p(k)) = 2n.
3
1, 0, 0, 0, 4, 24, 148, 744, 3696, 17640, 83420, 390144, 1817652, 8438664, 39117852, 181136304, 838372452, 3879505944, 17952463180, 83086702848, 384626048292, 1781018204328, 8249656925564, 38225193868560, 177179811427796, 821544012667704, 3810648054607212
OFFSET
0,5
COMMENTS
a(n) is always even for n>=1. More generally, A062869(n,k) is even whenever k >= n. - Conjectured by Franklin T. Adams-Watters, proved by Max Alekseyev. (see link in A062869)
LINKS
Mathieu Guay-Paquey and T. Kyle Petersen, The generating function for total displacement, arXiv:1404.4674 [math.CO], 2014.
MAPLE
with(linalg): f := (i, j) -> x^(abs(i-j)):for n from 1 to 17 do A := matrix(n, n, f): printf("%d, ", coeff(permanent(A), x, 2*n)) od: # Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 27 2008
MATHEMATICA
g[h_, n_] := g[h, n] = Module[{i, j}, {i, j} = QuotientRemainder[h, 2]; 1 - If[h==n, 0, (i+1)*z*t^(i+j)/g[h+1, n]]]; a[n_ /; n<4] = 0; a[n_] := SeriesCoefficient[1/g[0, n], {z, 0, n}, {t, 0, n}]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 26}] (* Jean-François Alcover, Jan 07 2016, after Alois P. Heinz *)
PROG
(PARI) a(n)=sum(k=1, n!, if(sum(i=1, n, abs(i-component(numtoperm(n, k), i)))-2*n, 0, 1))
CROSSREFS
Sequence in context: A045915 A052609 A077613 * A104531 A225050 A045738
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Aug 20 2002
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 27 2008
a(18)-a(21) from Robert Gerbicz, Nov 21 2010
a(22)-a(26) from Alois P. Heinz, May 02 2014 using formula given by Guay-Paquey and Petersen
a(0)=1 prepended by Alois P. Heinz, Oct 01 2022
STATUS
approved