
COMMENTS

The next term (a(4)) has 185 digits and is too large to include.  Harvey P. Dale, May 14 2013
Sequence A065815 gives the number of digits of a(n), resp. numbers k such that a(n)=floor(gamma*10^k). Sequences A005042, A007512, A115453, A119343, A210704... are the analog of the present sequence for Pi, e, sqrt(2), sqrt(3), 3^(1/3),...  M. F. Hasler, Aug 31 2013
The original wording of the definition (and example) was "primes found in the decimal expansion..." which could as well refer to the sequence (5,7,7,215664901,5,3,2, ...) or (5,7,72156649, ...) or (5,7,7215664901, ...) (analogs to A047777 or A195834), or to the sequence (5,7,57,...), analog to A198018.  M. F. Hasler, Sep 01 2013


MATHEMATICA

nn=200; With[{emc=RealDigits[EulerGamma, 10, nn][[1]]}, Select[Table[ FromDigits[ Take[emc, n]], {n, nn}], PrimeQ]] (* Harvey P. Dale, May 14 2013 *)


PROG

(PARI) default(realprecision, 777); /* use that many digits */
A072952={(c=gamma, v=1/*set to 0 for indices (i.e., A065815) instead of values*/)>for(k=0, precision(c), ispseudoprime(p=c\.1^k)&&print1([k, p][1+v]", ")) \\ M. F. Hasler, Aug 31 2013
