login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179634
Primes p such that p + d and p-d are primes, where d is the sum of floors of square roots of the digits of p.
1
5, 593, 647, 1097, 1187, 1367, 1453, 1663, 1753, 1783, 1873, 1907, 2287, 2377, 2417, 2683, 3463, 3637, 3923, 4513, 5413, 5807, 6263, 6317, 6373, 7523, 7823, 8087, 8117, 8237, 8713, 10853, 11807, 11833, 11903, 15313, 15803, 16063, 16223, 17027, 18223
OFFSET
1,1
LINKS
EXAMPLE
a(3)=647 since 647+[int(sqrt(6))+int(sqrt(4))+int(sqrt(7))]=647+(2+2+2)=647+6=653 is prime AND 647-6=641 is prime.
MAPLE
filter:= proc(p) local L, t, d;
if not isprime(p) then return false fi;
L:= convert(p, base, 10);
d:= add(floor(sqrt(t)), t=L);
isprime(p-d) and isprime(p+d)
end proc:
select(filter, [seq(i, i=3..20000, 2)]); # Robert Israel, Apr 14 2020
PROG
(PARI) isok(p) = isprime(p) && (d=digits(p)) && (sd = sum(i=1, #d, sqrtint(d[i]))) && isprime(p+sd) && isprime(p-sd); \\ Michel Marcus, Jan 19 2014
CROSSREFS
Sequence in context: A185555 A093941 A072952 * A302379 A303100 A302951
KEYWORD
nonn,base
AUTHOR
Carmine Suriano, Jul 21 2010
EXTENSIONS
Definition clarified by Robert Israel, Apr 14 2020
STATUS
approved