This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122020 Sum[k=0..n] Eulerian[n,k]*n^k. 2
 1, 6, 66, 1140, 28280, 948570, 41173776, 2238150600, 148570107264, 11804909261310, 1104566746764800, 120062928157552380, 14986973664751315968, 2127288759957421124610, 340440417300990616995840 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS n divides a(n). 2^m divides a(n), where m(n) = {0,1,1,2,3,1,4,3,7,1,9,2,10,1,11,4,15,1,17,2,18,1,20,3,22,...}. p^k divides from a(p^k-1), a(p^k), a(p^k+1) for prime p>2 and integer k>0. LINKS Eric Weisstein's World of Mathematics, Eulerian number Eric Weisstein's World of Mathematics, Polylogarithm. FORMULA a(n) = Sum[ Eulerian[n,k]*n^(n-k-1), {k,0,n} ] = n*A122778[n]. a(n) = n(n-1)*A086914[n] for n>1. a(n) = ((n-1)^(n+1)) * PolyLog[ -n, 1/n ] = ((n-1)^(n+1)) * Sum[ k^n/n^k, {k,1,Infinity} ] = ((n-1)^(n+1)) * A121376[n]/A121985[n] for n>1. MATHEMATICA Table[Sum[Eulerian[n, k]*n^k, {k, 0, n}], {n, 1, 25}] Flatten[{1, Table[(n-1)^(n+1)*PolyLog[-n, 1/n], {n, 2, 20}]}] (* Vaclav Kotesovec, Oct 16 2016 *) CROSSREFS Cf. A122778, A121376, A121985, A086914. Sequence in context: A113390 A267080 A229002 * A262601 A271220 A259123 Adjacent sequences:  A122017 A122018 A122019 * A122021 A122022 A122023 KEYWORD nonn AUTHOR Alexander Adamchuk, Sep 12 2006, Sep 14 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 15:29 EDT 2019. Contains 323597 sequences. (Running on oeis4.)