login
A329930
a(n) = n!^2*(Sum_{k=1..n} 1/k).
0
0, 1, 6, 66, 1200, 32880, 1270080, 65862720, 4418426880, 372523898880, 38569208832000, 4811724352512000, 712008517828608000, 123312192439468032000, 24712050750746591232000, 5674212235766262988800000, 1479958528399750515916800000, 435149988031383614993203200000
OFFSET
0,3
COMMENTS
For n>=1, a(n) is the number of vertices of the harmonic polytope. See Ardila and Escobar.
LINKS
Federico Ardila and Laura Escobar, The harmonic polytope, arXiv:2006.03078 [math.CO], 2020.
FORMULA
a(n) = A000142(n)*A000254(n).
PROG
(PARI) a(n) = n!^2*sum(k=1, n, 1/k);
CROSSREFS
Sequence in context: A376098 A122020 A262601 * A367308 A271220 A259123
KEYWORD
nonn
AUTHOR
Michel Marcus, Jun 08 2020
STATUS
approved