login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329930
a(n) = n!^2*(Sum_{k=1..n} 1/k).
0
0, 1, 6, 66, 1200, 32880, 1270080, 65862720, 4418426880, 372523898880, 38569208832000, 4811724352512000, 712008517828608000, 123312192439468032000, 24712050750746591232000, 5674212235766262988800000, 1479958528399750515916800000, 435149988031383614993203200000
OFFSET
0,3
COMMENTS
For n>=1, a(n) is the number of vertices of the harmonic polytope. See Ardila and Escobar.
LINKS
Federico Ardila and Laura Escobar, The harmonic polytope, arXiv:2006.03078 [math.CO], 2020.
FORMULA
a(n) = A000142(n)*A000254(n).
PROG
(PARI) a(n) = n!^2*sum(k=1, n, 1/k);
CROSSREFS
Sequence in context: A376098 A122020 A262601 * A367308 A271220 A259123
KEYWORD
nonn
AUTHOR
Michel Marcus, Jun 08 2020
STATUS
approved