login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329929
a(n) = lcm(tau(n), sigma(n), pod(n)) / gcd(tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).
1
1, 6, 12, 168, 30, 9, 56, 960, 351, 450, 132, 6048, 182, 294, 1800, 158720, 306, 25272, 380, 84000, 14112, 1089, 552, 414720, 11625, 7098, 29160, 32928, 870, 101250, 992, 2064384, 17424, 15606, 58800, 917070336, 1406, 5415, 85176, 11520000, 1722, 777924, 1892
OFFSET
1,2
COMMENTS
a(n) is also lcm(n, tau(n), sigma(n), pod(n)) / gcd(tau(n), sigma(n), pod(n)).
FORMULA
a(n) = lcm(n, tau(n), sigma(n), pod(n)) / gcd(tau(n), sigma(n), pod(n)).
a(n) = A336723(n) / A336722(n).
a(p) = p * (p+1) for p = primes.
EXAMPLE
a(6) = lcm(tau(6), sigma(6), pod(6)) / gcd(tau(6), sigma(6), pod(6)) = lcm(4, 12, 36) / gcd(4, 12, 36) = 36 / 4 = 9.
MATHEMATICA
a[n_] := LCM @@ (t = {(d = DivisorSigma[0, n]), n^(d/2), DivisorSigma[1, n]}) / GCD @@ t; Array[a, 50] (* Amiram Eldar, Aug 31 2020 *)
PROG
(Magma) [LCM([#Divisors(n), &+Divisors(n), &*Divisors(n)]) / GCD([#Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]];
(PARI) a(n) = my(f=factor(n), v=[numdiv(f), sigma(f), vecprod(divisors(f))]); lcm(v)/gcd(v); \\ Michel Marcus, Aug 31 2020
CROSSREFS
Cf. A334985 (lcm(n, tau(n), sigma(n), pod(n)) / gcd(n, tau(n), sigma(n), pod(n))).
Sequence in context: A203754 A002922 A334916 * A334985 A336723 A334805
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Aug 31 2020
STATUS
approved