login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337323
a(n) = gcd(n, tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).
5
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1
OFFSET
1,6
COMMENTS
GCD(n, tau(n), sigma(n), pod(n)) = GCD(n, tau(n), sigma(n)). - David A. Corneth, Aug 24 2020
LINKS
FORMULA
a(p) = 1 for p = primes (A000040).
a(n) = 1 for n = p^k, p prime, k >= 0 (A000961). - Bernard Schott, Apr 01 2021
EXAMPLE
a(6) = gcd(6, tau(6), sigma(6), pod(6)) = gcd(6, 4, 12, 36) = 2.
MAPLE
f:= proc(n) uses numtheory; igcd(n, tau(n), sigma(n)) end proc:
map(f, [$1..100]); # Robert Israel, Sep 01 2020
MATHEMATICA
a[n_] := GCD @@ {n, DivisorSigma[0, n], DivisorSigma[1, n]}; Array[a, 100] (* Amiram Eldar, Aug 24 2020 *)
PROG
(Magma) [GCD([n, #Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]]
(PARI) a(n) = my(f=factor(n)); gcd([n, sigma(f), numdiv(f)]); \\ Michel Marcus, Apr 01 2021
CROSSREFS
Cf. A336722 (gcd(tau(n), sigma(n), pod(n))).
Cf. A337324 (least m such that gcd(m, tau(m), sigma(m), pod(m)) = n).
Cf. A336723 (lcm(tau(n), sigma(n), pod(n))) = (lcm(n, tau(n), sigma(n), pod(n))).
Sequence in context: A348928 A124766 A359233 * A344770 A293895 A375120
KEYWORD
nonn,easy
AUTHOR
Jaroslav Krizek, Aug 23 2020
STATUS
approved