login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337326
a(n) is the smallest number with n divisors d such that sigma(d) / tau(d) is an integer.
2
1, 3, 6, 15, 45, 30, 42, 60, 132, 264, 270, 378, 594, 210, 462, 780, 1050, 420, 924, 660, 2100, 840, 3060, 1848, 3300, 1890, 2970, 2520, 9702, 2310, 5544, 3780, 11592, 8316, 18216, 5460, 5940, 7980, 16830, 7140, 11550, 4620, 21252, 10920, 23760, 22440, 49500
OFFSET
1,2
COMMENTS
a(n) is the smallest number m with n arithmetic divisors d (terms of A003601).
See A338170, A338171 and A338172 for number, sum and product of such divisors for n>=1.
FORMULA
a(3) = 6 because number 6 is the smallest number with 3 such divisors (1, 3 and 6): sigma(1) / tau(1) = 1 / 1 = 1; sigma(3) / tau(3) = 4 / 2 = 2; sigma(6) / tau(6) = 12 / 4 = 3.
MATHEMATICA
f[n_] := DivisorSum[n, 1 &, Divisible[DivisorSigma[1, #], DivisorSigma[0, #]] &]; m = 50; s = Table[0, {m}]; c = 0; n = 1; While[c < m, If[(i = f[n]) <= m && s[[i]] == 0, c++; s[[i]] = n]; n++]; s (* Amiram Eldar, Oct 21 2020 *)
PROG
(Magma) [Min([m: m in[1..10^5] | #[d: d in Divisors(m) | IsIntegral(&+Divisors(d) / #Divisors(d))] eq n]): n in [1..30]]
(PARI) isok(m, n) = sumdiv(m, d, !(sigma(d) % numdiv(d))) == n;
a(n) = my(m=1); while(!isok(m, n), m++); m; \\ Michel Marcus, Oct 21 2020
CROSSREFS
Cf. A000005 (tau), A000203 (sigma), A003601 (arithmetic numbers).
Cf. A334421 (smallest number with n divisors d such that sigma(d)/tau(d) is an integer for all divisors).
Sequence in context: A005368 A067771 A289678 * A056382 A028401 A005655
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Oct 20 2020
STATUS
approved