login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336723
a(n) = lcm(tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).
6
1, 6, 12, 168, 30, 36, 56, 960, 351, 900, 132, 12096, 182, 1176, 1800, 158720, 306, 75816, 380, 168000, 14112, 4356, 552, 1658880, 11625, 14196, 29160, 65856, 870, 810000, 992, 2064384, 17424, 31212, 58800, 917070336, 1406, 21660, 85176, 23040000, 1722, 6223392
OFFSET
1,2
COMMENTS
a(n) = pod(n) for numbers n: 1, 6, 30, 66, 84, 102, 120, 210, 270, 318, 330, 420, 462, 510, 546, 570, 642, ...
FORMULA
a(p) = p^2 + p for p = primes (A000040).
EXAMPLE
a(6) = lcm(tau(6), sigma(6), pod(6)) = lcm(4, 12, 36) = 36.
MATHEMATICA
a[n_] := LCM @@ {(d = DivisorSigma[0, n]), DivisorSigma[1, n], n^(d/2)}; Array[a, 50] (* Amiram Eldar, Aug 01 2020 *)
PROG
(Magma) [LCM([#Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]];
(PARI) a(n) = my(d=divisors(n)); lcm([#d, vecsum(d), vecprod(d)]); \\ Michel Marcus, Aug 12 2020
CROSSREFS
Cf. A009278 (lcm(tau(n), sigma(n))), A324528 (lcm(tau(n), pod(n))), A324529 (lcm(sigma(n), pod(n))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A007955 (pod(n)), A336722 (gcd(tau(n), sigma(n), pod(n))).
Cf. A277521 (numbers k such that a(k) = pod(k) and simultaneously A336722(k) = tau(k)).
Sequence in context: A334916 A329929 A334985 * A334805 A324980 A014402
KEYWORD
nonn,changed
AUTHOR
Jaroslav Krizek, Aug 01 2020
STATUS
approved