login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277521
Numbers k such that number of divisors of k and sum of divisors of k divides product of divisors of k and the average of the divisors of k is an integer.
4
1, 6, 30, 66, 102, 210, 270, 318, 330, 420, 462, 510, 546, 570, 642, 672, 690, 714, 840, 870, 924, 930, 966, 1122, 1320, 1410, 1428, 1518, 1590, 1638, 1722, 1770, 1890, 1932, 2130, 2226, 2280, 2310, 2346, 2370, 2670, 2730, 2760, 2838, 2970, 2982, 3102, 3162, 3210, 3360, 3444, 3486, 3498, 3570, 3720, 3780, 3948, 3990
OFFSET
1,2
COMMENTS
Intersection of A003601, A120736 and A145551.
Numbers k such that A000005(k)|A007955(k), A000203(k)|A007955(k) and A000005(k)| A000203(k).
Numbers k such that A000005(k)|A062981(k), A072861(k)|A062758(k) and A245656(k) = 1.
LINKS
Eric Weisstein's World of Mathematics, Divisor Product.
Eric Weisstein's World of Mathematics, Divisor Function.
Wikipedia, Arithmetic number.
EXAMPLE
a(2) = 6 because 6 has 4 divisors {1,2,3,6}, 1*2*3*6/4 = 9, 1*2*3*6/(1 + 2 + 3 + 6) = 3 and (1 + 2 + 3 + 6)/4 = 3 are integer.
MAPLE
with(numtheory): P:=proc(q) local a, b, k, n; for n from 1 to q do
a:=divisors(n); b:=mul(a[k], k=1..nops(a));
if type(sigma(n)/tau(n), integer) and type(b/sigma(n), integer) and
type(b/tau(n), integer) then print(n); fi;
od; end: P(10^5); # Paolo P. Lava, Oct 20 2016
MATHEMATICA
Select[Range[4000], Divisible[Sqrt[#1]^DivisorSigma[0, #1], DivisorSigma[1, #1]] && Divisible[Sqrt[#1]^DivisorSigma[0, #1], DivisorSigma[0, #1]] && Divisible[DivisorSigma[1, #1], DivisorSigma[0, #1]] & ]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 19 2016
STATUS
approved