login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338395
Numbers m such that lcm(tau(m), sigma(m), pod(m)) = pod(m).
2
1, 6, 30, 66, 84, 102, 120, 210, 270, 318, 330, 420, 462, 510, 546, 570, 642, 672, 690, 714, 840, 870, 924, 930, 966, 1080, 1092, 1122, 1320, 1410, 1428, 1518, 1590, 1638, 1722, 1770, 1890, 1932, 2040, 2130, 2226, 2280, 2310, 2346, 2370, 2604, 2670, 2730, 2760
OFFSET
1,2
COMMENTS
Numbers m such that A336723(m)= lcm(A000005(m), A000203(m), A007955(m)) = A007955(m).
Numbers m such that both values tau(m) and sigma(m) divide pod(m).
Numbers m such that all values m, tau(m) and sigma(m) divide pod(m); i.e. lcm(m, tau(m), sigma(m), pod(m)) = pod(m).
Supersequence of A277521.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..12916 (a(n) < 10^7)
EXAMPLE
lcm(tau(6), sigma(6), pod(6)) = lcm(4, 12, 36) = 36 = pod(6).
MATHEMATICA
Select[Range[3000], LCM @@ {(d = DivisorSigma[0, #]), DivisorSigma[1, #], (pod = #^(d/2))} == pod &] (* Amiram Eldar, Oct 24 2020 *)
PROG
(Magma) [m: m in [1..10^5] | LCM([#Divisors(m), &+Divisors(m), &*Divisors(m)]) eq &*Divisors(m)]
(PARI) isok(m) = my(d=divisors(m), prd=vecprod(d)); lcm([#d, vecsum(d), prd]) == prd; \\ Michel Marcus, Oct 24 2020
CROSSREFS
Cf. A000005 (tau), A000203 (sigma), A007955 (pod).
Sequence in context: A145010 A056835 A056836 * A277521 A163640 A199130
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Oct 23 2020
STATUS
approved