OFFSET
0,2
COMMENTS
Let $ denote the swinging factorial. a(n) is the radical of (2*n+1)$ which is the product of the prime numbers dividing (2*n+1)$. It is the largest squarefree divisor of (2*n+1)$, and so also described as the squarefree kernel of (2*n+1)$.
LINKS
Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
Peter Luschny, Swinging Factorial.
EXAMPLE
(2*5+1)$ = 2772 = 2^2*3^2*7*11. Therefore a(5) = 2*3*7*11 = 462.
MAPLE
a := proc(n) local p; mul(p, p=numtheory[factorset]((2*n+1)!/iquo(2*n+1, 2)!^2)) end:
MATHEMATICA
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Times @@ FactorInteger[sf[2*n + 1]][[All, 1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 30 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Aug 02 2009
STATUS
approved