login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014402
Numbers found in denominators of expansion of Airy function Ai(x).
6
1, 1, 6, 12, 180, 504, 12960, 45360, 1710720, 7076160, 359251200, 1698278400, 109930867200, 580811212800, 46170964224000, 268334780313600, 25486372251648000, 161000868188160000, 17891433320656896000
OFFSET
0,3
COMMENTS
Although the description is technically correct, this sequence is unsatisfactory because there are gaps in the series.
A014402 arises via Vandermonde determinants as in A203433; see the Mathematica section. - Clark Kimberling, Jan 02 2012
LINKS
NIST's Digital Library of Mathematical Functions, Airy and Related Functions (Maclaurin Series) by Frank W. J. Olver.
FORMULA
a(2*n) = A176730(n). a(2*n + 1) = A176731(n). - Michael Somos, Oct 14 2011
EXAMPLE
Mathematica gives the series as 1/(3^(2/3)*Gamma(2/3)) - x/(3^(1/3)*Gamma(1/3)) + x^3/(6*3^(2/3)*Gamma(2/3)) - x^4/(12*3^(1/3)*Gamma(1/3) + x^6/(180*3^(2/3)*Gamma(2/3) - x^7/(504*3^(1/3)*Gamma(1/3) + x^9/(12960*3^(2/3)*Gamma(2/3) - ...
MATHEMATICA
Series[ AiryAi[ x ], {x, 0, 30} ]
a[ n_] := If[ n<0, 0, (n + Quotient[ n, 2])! / Product[ 3 k + 1 + Mod[n, 2], {k, 0, Quotient[ n, 2] - 1}]]; (* Michael Somos, Oct 14 2011 *)
(* Next, A014402 generated in via Vandermonde determinants based on A007494 *)
f[j_]:= j + Floor[(j+1)/2]; z = 20;
v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}]
d[n_]:= Product[(i-1)!, {i, n}]
Table[v[n], {n, z}] (* A203433 *)
Table[v[n+1]/v[n], {n, z}] (* this sequence *)
Table[v[n]/d[n], {n, z}] (* A203434 *)
(* Clark Kimberling, Jan 02 2012 *)
PROG
(PARI) {a(n) = if( n<0, 0, (n\2 + n)! / prod( k=0, n\2 -1, n%2 + 3*k + 1))}; /* Michael Somos, Oct 14 2011 */
(Magma)
A014402:= func< n | n eq 0 select 1 else (&*[n-j+Floor(n/2)-Floor(j/2): j in [0..n-1]]) >;
[A014402(n): n in [0..25]]; // G. C. Greubel, Sep 20 2023
(SageMath)
def A014402(n): return product(n-j+(n//2)-(j//2) for j in range(n))
[A014402(n) for n in range(31)] # G. C. Greubel, Sep 20 2023
CROSSREFS
KEYWORD
nonn
STATUS
approved