OFFSET
0,3
COMMENTS
Although the description is technically correct, this sequence is unsatisfactory because there are gaps in the series.
A014402 arises via Vandermonde determinants as in A203433; see the Mathematica section. - Clark Kimberling, Jan 02 2012
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..420
NIST's Digital Library of Mathematical Functions, Airy and Related Functions (Maclaurin Series) by Frank W. J. Olver.
FORMULA
EXAMPLE
Mathematica gives the series as 1/(3^(2/3)*Gamma(2/3)) - x/(3^(1/3)*Gamma(1/3)) + x^3/(6*3^(2/3)*Gamma(2/3)) - x^4/(12*3^(1/3)*Gamma(1/3) + x^6/(180*3^(2/3)*Gamma(2/3) - x^7/(504*3^(1/3)*Gamma(1/3) + x^9/(12960*3^(2/3)*Gamma(2/3) - ...
MATHEMATICA
Series[ AiryAi[ x ], {x, 0, 30} ]
a[ n_] := If[ n<0, 0, (n + Quotient[ n, 2])! / Product[ 3 k + 1 + Mod[n, 2], {k, 0, Quotient[ n, 2] - 1}]]; (* Michael Somos, Oct 14 2011 *)
f[j_]:= j + Floor[(j+1)/2]; z = 20;
v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}]
d[n_]:= Product[(i-1)!, {i, n}]
Table[v[n], {n, z}] (* A203433 *)
Table[v[n+1]/v[n], {n, z}] (* this sequence *)
Table[v[n]/d[n], {n, z}] (* A203434 *)
(* Clark Kimberling, Jan 02 2012 *)
PROG
(PARI) {a(n) = if( n<0, 0, (n\2 + n)! / prod( k=0, n\2 -1, n%2 + 3*k + 1))}; /* Michael Somos, Oct 14 2011 */
(Magma)
A014402:= func< n | n eq 0 select 1 else (&*[n-j+Floor(n/2)-Floor(j/2): j in [0..n-1]]) >;
[A014402(n): n in [0..25]]; // G. C. Greubel, Sep 20 2023
(SageMath)
def A014402(n): return product(n-j+(n//2)-(j//2) for j in range(n))
[A014402(n) for n in range(31)] # G. C. Greubel, Sep 20 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved