Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Dec 21 2024 15:20:18
%S 1,6,12,168,30,36,56,960,351,900,132,12096,182,1176,1800,158720,306,
%T 75816,380,168000,14112,4356,552,1658880,11625,14196,29160,65856,870,
%U 810000,992,2064384,17424,31212,58800,917070336,1406,21660,85176,23040000,1722,6223392
%N a(n) = lcm(tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).
%C a(n) = pod(n) for numbers n: 1, 6, 30, 66, 84, 102, 120, 210, 270, 318, 330, 420, 462, 510, 546, 570, 642, ...
%F a(p) = p^2 + p for p = primes (A000040).
%e a(6) = lcm(tau(6), sigma(6), pod(6)) = lcm(4, 12, 36) = 36.
%t a[n_] := LCM @@ {(d = DivisorSigma[0,n]), DivisorSigma[1, n], n^(d/2)}; Array[a, 50] (* _Amiram Eldar_, Aug 01 2020 *)
%o (Magma) [LCM([#Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]];
%o (PARI) a(n) = my(d=divisors(n)); lcm([#d, vecsum(d), vecprod(d)]); \\ _Michel Marcus_, Aug 12 2020
%Y Cf. A009278 (lcm(tau(n), sigma(n))), A324528 (lcm(tau(n), pod(n))), A324529 (lcm(sigma(n), pod(n))).
%Y Cf. A000005 (tau(n)), A000203 (sigma(n)), A007955 (pod(n)), A336722 (gcd(tau(n), sigma(n), pod(n))).
%Y Cf. A277521 (numbers k such that a(k) = pod(k) and simultaneously A336722(k) = tau(k)).
%K nonn,changed
%O 1,2
%A _Jaroslav Krizek_, Aug 01 2020