login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = lcm(tau(n), sigma(n), pod(n)) / gcd(tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).
1

%I #61 Aug 28 2024 16:36:50

%S 1,6,12,168,30,9,56,960,351,450,132,6048,182,294,1800,158720,306,

%T 25272,380,84000,14112,1089,552,414720,11625,7098,29160,32928,870,

%U 101250,992,2064384,17424,15606,58800,917070336,1406,5415,85176,11520000,1722,777924,1892

%N a(n) = lcm(tau(n), sigma(n), pod(n)) / gcd(tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

%C a(n) is also lcm(n, tau(n), sigma(n), pod(n)) / gcd(tau(n), sigma(n), pod(n)).

%F a(n) = lcm(n, tau(n), sigma(n), pod(n)) / gcd(tau(n), sigma(n), pod(n)).

%F a(n) = A336723(n) / A336722(n).

%F a(p) = p * (p+1) for p = primes.

%e a(6) = lcm(tau(6), sigma(6), pod(6)) / gcd(tau(6), sigma(6), pod(6)) = lcm(4, 12, 36) / gcd(4, 12, 36) = 36 / 4 = 9.

%t a[n_] := LCM @@ (t = {(d = DivisorSigma[0, n]), n^(d/2), DivisorSigma[1, n]}) / GCD @@ t; Array[a, 50] (* _Amiram Eldar_, Aug 31 2020 *)

%o (Magma) [LCM([#Divisors(n), &+Divisors(n), &*Divisors(n)]) / GCD([#Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]];

%o (PARI) a(n) = my(f=factor(n), v=[numdiv(f), sigma(f), vecprod(divisors(f))]); lcm(v)/gcd(v); \\ _Michel Marcus_, Aug 31 2020

%Y Cf. A336722, A336723, A337323.

%Y Cf. A334985 (lcm(n, tau(n), sigma(n), pod(n)) / gcd(n, tau(n), sigma(n), pod(n))).

%Y Cf. A000005, A000203, A007955.

%K nonn

%O 1,2

%A _Jaroslav Krizek_, Aug 31 2020