login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267080
Coefficient of x^2 in the minimal polynomial of the continued fraction [1^n,2^(1/3),1,1,...], where 1^n means n ones.
7
-6, -66, 1110, 18318, 333750, 5938446, 106865274, 1915425570, 34385669382, 616923941070, 11070947149014, 198655308975486, 3564757609030650, 63966755470710018, 1147838391054195510, 20597113658105850126, 369600280281802257654, 6632207432249371045230
OFFSET
0,1
COMMENTS
See A265762 for a guide to related sequences.
LINKS
FORMULA
a(n) = 13*a(n-1) + 104*a(n-2) - 260*a(n-3) - 260*a(n-4) + 104*a(n-5) + 13*a(n-6) - a(n-7) for n > 8.
G.f.: -((6 (1 - 3 x - 429 x^2 - 1103 x^3 + 7527 x^4 - 1975 x^5 - 308 x^6 + 22 x^7))/(1 - 14 x - 90 x^2 + 350 x^3 - 90 x^4 - 14 x^5 + x^6)).
From Andrew Howroyd, Mar 07 2018: (Start)
a(n) = 14*a(n-1) + 90*a(n-2) - 350*a(n-3) + 90*a(n-4) + 14*a(n-5) - a(n-6) for n > 7.
G.f.: -6*(1 - 3*x - 429*x^2 - 1103*x^3 + 7527*x^4 - 1975*x^5 - 308*x^6 + 22*x^7)/((1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2)).
(End)
EXAMPLE
Let u = 2^(1/3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u,1,1,1,...] has p(0,x) = -5 - 15 x - 6 x^2 - 9 x^3 + 3 x^5 + x^6, so that a(0) = -6.
[1,u,1,1,1,...] has p(1,x) = -11 + 45 x - 66 x^2 + 35 x^3 + 6 x^4 - 15 x^5 + 5 x^6, so that a(1) = -66;
[1,1,u,1,1,1...] has p(2,x) = 131 - 633 x + 1110 x^2 - 969 x^3 + 456 x^4 - 111 x^5 + 11 x^6, so that a(2) = 1110.
MATHEMATICA
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2^(1/3)}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 30}]
Coefficient[t, x, 0]; (* A267078 *)
Coefficient[t, x, 1]; (* A267079 *)
Coefficient[t, x, 2]; (* A267080 *)
Coefficient[t, x, 3]; (* A267081 *)
Coefficient[t, x, 4]; (* A267082 *)
Coefficient[t, x, 5]; (* A267083 *)
Coefficient[t, x, 6]; (* A266527 *)
PROG
(PARI) Vec(-6*(1 - 3*x - 429*x^2 - 1103*x^3 + 7527*x^4 - 1975*x^5 - 308*x^6 + 22*x^7)/((1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2)) + O(x^30)) \\ Andrew Howroyd, Mar 07 2018
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Jan 11 2016
STATUS
approved