The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122023 Vacuum Virtual Particle 10 vertex graph as Feynman diagram seen as a 10 X 10 bonding graph vector Matrix Markov: characteristic Polynomial: x^4(-3 + x^2)(8 - 7 x^2 + x^4). 1
 0, 1, 3, 11, 29, 109, 283, 795, 2061, 5053, 13099, 30091, 78013, 173453, 449723, 983163, 2549229, 5523677, 14322635, 30887915, 80092061, 172288429, 446745691, 959703003, 2488530381, 5341975549, 13851888235, 29723290699, 77073397885 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Calculation of relative energy of ten particle states as secular equation: aaa = Table[x /. NSolve[Det[M - x*IdentityMatrix[10]] == 0, x][[n]], {n, 1, 10}] Sum[2*aaa[[n]], {n, 1, 5}]=-10.5794 The excess energy is about 8*alpha if each vertex is taken as one unit. LINKS FORMULA M = {{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 1, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 1, 1, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 1, 1, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 1, 1, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0}} v[1] = Table[Fibonacci[n], {n, 0, 9}] v[n_] := v[n] = M.v[n - 1] a(n) = v[n][[1]] Empirical G.f.: x^2*(1+3*x+x^2-x^3+28*x^4+80*x^5)/(1-10*x^2+29*x^4-24*x^6). [Colin Barker, Jan 04 2012] MATHEMATICA M = {{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 1, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 1, 1, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 1, 1, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 1, 1, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0}} v[1] = Table[Fibonacci[n], {n, 0, 9}] v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}] CROSSREFS Sequence in context: A000251 A159229 A239713 * A259594 A293010 A236467 Adjacent sequences:  A122020 A122021 A122022 * A122024 A122025 A122026 KEYWORD nonn,uned AUTHOR Roger L. Bagula, Sep 12 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 20:49 EST 2021. Contains 349395 sequences. (Running on oeis4.)