login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086914
a(n) = ((n-1)^n/n)*Sum_{k>=1} (k^n/n^k).
3
0, 3, 11, 95, 1414, 31619, 980328, 39966975, 2063473712, 131165658459, 10041515879680, 909567637557215, 96070344004816128, 11688399779985830355, 1621144844290431509504, 254042974238965752088575
OFFSET
1,2
COMMENTS
Appears to always be an integer.
FORMULA
a(n) = Euler(n, n)/(n-1) where Euler(n, x) is Eulerian polynomial of degree n (cf. A008292). - Vladeta Jovovic, Sep 26 2003
a(n) = (n-1)^n/n*polylog(-n, 1/n) = 1/(n-1)*Sum(n^i*Sum((-1)^j*binomial(n+1, j)*(i-j+1)^n, j = 0 .. i), i = 0 .. n), n>1. - Vladeta Jovovic, Sep 26 2003
Prime p divides a(p-1) for p>2. - Alexander Adamchuk, Sep 19 2006
a(n) = A122020[n] / (n*(n-1)) for n>1. a(n) = A122778[n] / (n-1) for n>1. a(n) = ((n-1)^n)/n * A121376[n]/A121985[n] for n>1. - Alexander Adamchuk, Sep 19 2006
a(n) ~ exp(-1) * n! * n^(n-1) / log(n)^(n+1). - Vaclav Kotesovec, Jun 06 2022
MATHEMATICA
Table[Sum[(n-1)^n*k^n/n^(k+1), {k, 1, Infinity}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 16 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Sep 24 2003
STATUS
approved