login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086915
Triangle read by rows: T(n,k) = 2^k * (n!/k!)*binomial(n-1,k-1).
3
2, 4, 4, 12, 24, 8, 48, 144, 96, 16, 240, 960, 960, 320, 32, 1440, 7200, 9600, 4800, 960, 64, 10080, 60480, 100800, 67200, 20160, 2688, 128, 80640, 564480, 1128960, 940800, 376320, 75264, 7168, 256, 725760, 5806080, 13547520, 13547520, 6773760, 1806336
OFFSET
1,1
COMMENTS
Also the Bell transform of A052849(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016
The coefficients of n! * L_n(-2*x,-1), where n! * L_n(-x,-1) are the normalized, unsigned Laguerre polynomials of order -1 of A105278, also known as the Lah polynomials, which are also a shifted version of n! * L_n(-x,1). Cf. p. 8 of the Gross and Matytsin link. - Tom Copeland, Sep 30 2016
FORMULA
E.g.f.: exp(2*x*y/(1-x)).
From G. C. Greubel, Feb 23 2021: (Start)
T(n, k) = (-2)^k * A008297(n, k) = 2^k * A105278(n, k).
Sum_{k=1..n} T(n, k) = 2 * n! * Hypergeometric1F1([1-n], [2], -2) = 2*(n-1)! * LaguerreL(n-1, 1, -2) = A253286(n, 2). (End)
EXAMPLE
Triangle begins:
2;
4, 4;
12, 24, 8;
48, 144, 96, 16;
...
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ...) as column 0.
BellMatrix(n -> 2*(n+1)!, 9); # Peter Luschny, Jan 26 2016
MATHEMATICA
Flatten[Table[n!/k! Binomial[n-1, k-1]2^k, {n, 10}, {k, n}]] (* Harvey P. Dale, May 25 2011 *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[2*(#+1)!&, rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
PROG
(PARI) for(n=1, 10, for(k=1, n, print1(n!/k!*binomial(n-1, k-1)*2^k, ", "))) \\ G. C. Greubel, May 23 2018
(Magma) [Factorial(n)*Binomial(n-1, k-1)*2^k/Factorial(k): k in [1..n], n in [1..10]]; // G. C. Greubel, May 23 2018
CROSSREFS
Cf. A008297, A052897 (row sums), A059110, A079621, A105278.
Sequence in context: A130618 A129882 A129017 * A059927 A290437 A154987
KEYWORD
nonn,tabl
AUTHOR
Vladeta Jovovic, Sep 24 2003
STATUS
approved