login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = 2^k * (n!/k!)*binomial(n-1,k-1).
3

%I #40 Sep 08 2022 08:45:11

%S 2,4,4,12,24,8,48,144,96,16,240,960,960,320,32,1440,7200,9600,4800,

%T 960,64,10080,60480,100800,67200,20160,2688,128,80640,564480,1128960,

%U 940800,376320,75264,7168,256,725760,5806080,13547520,13547520,6773760,1806336

%N Triangle read by rows: T(n,k) = 2^k * (n!/k!)*binomial(n-1,k-1).

%C Also the Bell transform of A052849(n+1). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 26 2016

%C The coefficients of n! * L_n(-2*x,-1), where n! * L_n(-x,-1) are the normalized, unsigned Laguerre polynomials of order -1 of A105278, also known as the Lah polynomials, which are also a shifted version of n! * L_n(-x,1). Cf. p. 8 of the Gross and Matytsin link. - _Tom Copeland_, Sep 30 2016

%H G. C. Greubel, <a href="/A086915/b086915.txt">Rows n=1..100 of the triangle, flattened</a>

%H D. Gross and A. Matytsin, <a href="http://arxiv.org/abs/hep-th/9404004">Instanton induced large N phase transitions in two and four dimensional QCD</a>, arXiv:hep-th/9404004, 1994.

%H <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>

%F E.g.f.: exp(2*x*y/(1-x)).

%F From _G. C. Greubel_, Feb 23 2021: (Start)

%F T(n, k) = (-2)^k * A008297(n, k) = 2^k * A105278(n, k).

%F Sum_{k=1..n} T(n, k) = 2 * n! * Hypergeometric1F1([1-n], [2], -2) = 2*(n-1)! * LaguerreL(n-1, 1, -2) = A253286(n, 2). (End)

%e Triangle begins:

%e 2;

%e 4, 4;

%e 12, 24, 8;

%e 48, 144, 96, 16;

%e ...

%p # The function BellMatrix is defined in A264428.

%p # Adds (1, 0, 0, 0, ...) as column 0.

%p BellMatrix(n -> 2*(n+1)!, 9); # _Peter Luschny_, Jan 26 2016

%t Flatten[Table[n!/k! Binomial[n-1,k-1]2^k,{n,10},{k,n}]] (* _Harvey P. Dale_, May 25 2011 *)

%t BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];

%t B = BellMatrix[2*(#+1)!&, rows = 12];

%t Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2018, after _Peter Luschny_ *)

%o (PARI) for(n=1,10, for(k=1, n, print1(n!/k!*binomial(n-1,k-1)*2^k, ", "))) \\ _G. C. Greubel_, May 23 2018

%o (Magma) [Factorial(n)*Binomial(n-1,k-1)*2^k/Factorial(k): k in [1..n], n in [1..10]]; // _G. C. Greubel_, May 23 2018

%Y Cf. A008297, A052897 (row sums), A059110, A079621, A105278.

%K nonn,tabl

%O 1,1

%A _Vladeta Jovovic_, Sep 24 2003