login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059110 Triangle T = A007318*A271703; T(n,m)= Sum_{i=0..n} L'(n,i)*binomial(i,m), m=0..n. 8
1, 1, 1, 3, 4, 1, 13, 21, 9, 1, 73, 136, 78, 16, 1, 501, 1045, 730, 210, 25, 1, 4051, 9276, 7515, 2720, 465, 36, 1, 37633, 93289, 85071, 36575, 8015, 903, 49, 1, 394353, 1047376, 1053724, 519456, 137270, 20048, 1596, 64, 1, 4596553, 12975561 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

L'(n,i) are unsigned Lah numbers (cf. A008297): L'(n,i)=n!/i!*binomial(n-1,i-1) for i >= 1, L'(0,0)=1, L'(n,0)=0 for n>0. T(n,0)=A000262(n); T(n,2)=A052852(n). Row sums A052897.

Exponential Riordan array [e^(x/(1-x)),x/(1-x)]. - Paul Barry, Apr 28 2007

From Wolfdieter Lang, Jun 22 2017: (Start)

The inverse matrix T^(-1) is exponential Riordan (aka Sheffer) (e^(-x), x/(1+x)): T^(-1)(n, m) = (-1)^(n-m)*A271705(n, m).

The a- and z-sequences of this Sheffer (aka exponential Riordan) matrix are a = [1,1,repeat(0)] and z(n) = (-1)^(n+1)*A028310(n)/A000027(n-1) with e.g.f. ((1+x)/x)*(1-exp(-x)). For a- and z-sequences see a W. Lang link under A006232 with references. (End)

LINKS

Muniru A Asiru, Rows n=0..50 of triangle, flattened

FORMULA

E.g.f. for column m: 1/m!*(x/(1-x))^m*e^(x/(x-1)), m >= 0.

From Wolfdieter Lang, Jun 22 2017:(Start)

E.g.f. for row polynomials in powers of x (e.g.f. of the triangle): exp(z/(1-z))* exp(x*z/(1-z)) (exponential Riordan).

Recurrence: T(n, 0) = Sum_{j=0} z(j)*T(n-1, j), n >= 1, with z(n) = (-1)^(n+1)*A028310(n), T(0, 0) = 1, T(n, m) = 0 n < m, T(n, m) = n*(T(n-1, m-1)/m + T(n-1, m)), n >= m >= 1 (from the z- and a-sequence, see a comment above).

Meixner type recurrence for the (monic) row polynomials R(n, x) = Sum_{m=0..n} T(n, m)*x^m: Sum_{k=0..n-1} (-1)^k*D^(k+1)*R(n, x) = n*R(n-1, x), n >=1, R(0, x) = 1, with D = d/dx.

General Sheffer recurrence: R(n, x) = (x+1)*(1+D)^2*R(n-1, x), n >=1, R(0, x) = 1.

(End)

P_n(x) = L_n(1+x) = n!*Lag_n(-(1+x);1), where P_n(x) are the row polynomials of this entry; L_n(x), the Lah polynomials of A105278; and Lag_n(x;1), the Laguerre polynomials of order 1. These relations follow from the relation between the iterated operator (x^2 D)^n and ((1+x)^2 D)^n with D = d/dx. - Tom Copeland, Jul 18 2018

EXAMPLE

The triangle T = A007318*A271703 starts:

n\m       0        1        2       3       4      5     6    7  8 9 ...

0:        1

1:        1        1

2:        3        4        1

3:       13       21        9       1

4:       73      136       78      16       1

5:      501     1045      730     210      25      1

6:     4051     9276     7515    2720     465     36     1

7:    37633    93289    85071   36575    8015    903    49    1

8:   394353  1047376  1053724  519456  137270  20048  1596   64  1

9:  4596553 12975561 14196708 7836276 2404206 427518 44436 2628 81 1

... reformatted. - Wolfdieter Lang, Jun 22 2017

E.g.f. for T(n, 2) = 1/2!*(x/(1-x))^2*e^(x/(x-1)) = 1*x^2/2 + 9*x^3/3! + 78*x^4/4! + 730*x^5/5! + 7515*x^6/6 + ...

From Wolfdieter Lang, Jun 22 2017: (Start)

The z-sequence starts: [1, 1/2, -2/3, 3/4, -4/5, 5/6, -6/7, 7/8, -8/9, ...

T recurrence: T(3, 0) = 3*(1*T(2,0) + (1/2)*T(2, 1) + (-2/3)*T(2 ,1)) = 3*(3 + (1/2)*4 - (2/3)) = 13; T(3, 1) = 3*(T(2, 0)/1 + T(2, 1)) = 3*(3 + 4) = 21.

Meixner type recurrence for R(2, x): (D - D^2)*(3 + 4*x + x^2) = 4 + 2*x - 2 = 2*(1 + x), (D = d/dx).

General Sheffer recurrence for R(2, x): (1+x)*(1 + 2*D + D^2)*(1 + x) = (1+x)*(1 + x + 2) = 3 + 4*x + x^2. (End)

MAPLE

Lprime := proc(n, i)

    if n = 0 and i = 0 then

        1;

    elif k = 0 then

        0 ;

    else

        n!/i!*binomial(n-1, i-1) ;

    end if;

end proc:

A059110 := proc(n, k)

    add(Lprime(n, i)*binomial(i, k), i=0..n) ;

end proc: # R. J. Mathar, Mar 15 2013

MATHEMATICA

lp[n_, i_] := Binomial[n-1, i-1]*n!/i!; lp[0, 0] = 1; t[n_, m_] := Sum[lp[n, i]*Binomial[i, m], {i, 0, n}]; Table[t[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Mar 26 2013 *)

PROG

(GAP) Concatenation([1], Flat(List([1..10], n->List([0..n], m->Sum([0..n], i-> Factorial(n)/Factorial(i)*Binomial(n-1, i-1)*Binomial(i, m)))))); # Muniru A Asiru, Jul 25 2018

CROSSREFS

Cf. A007318, A000262, A008297, A052852, A052897, A271703, A271705.

Sequence in context: A110506 A114189 A200659 * A100326 A303728 A321627

Adjacent sequences:  A059107 A059108 A059109 * A059111 A059112 A059113

KEYWORD

easy,nonn,tabl

AUTHOR

Vladeta Jovovic, Jan 04 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 24 02:32 EDT 2019. Contains 326260 sequences. (Running on oeis4.)