login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114189
Riordan array (1/(1+xc(-2x)), xc(-2x)/(1+xc(-2x))), c(x) the g.f. of A000108.
4
1, -1, 1, 3, -4, 1, -13, 19, -7, 1, 67, -102, 44, -10, 1, -381, 593, -278, 78, -13, 1, 2307, -3640, 1795, -568, 121, -16, 1, -14589, 23231, -11849, 4051, -999, 173, -19, 1, 95235, -152650, 79750, -28770, 7820, -1598, 234, -22, 1, -636925, 1025965, -545680, 204760, -59650, 13642, -2392, 304, -25, 1
OFFSET
0,4
COMMENTS
Inverse of A114188. Factors as (1,xc(-2x))*(1/(1+x), x/(1+x)). Row sums are 0^n. Diagonal sums are A114190. First column is A114191. A signed version of A110506.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [ -1,-2,-2,-2,-2,-2,-2,...] DELTA [1,0,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 01 2007
FORMULA
Riordan array ((3-sqrt(1+8x))/(2(1-x)), (sqrt(1+8x)-2x-1)/(2(1-x))).
T(n,k) = (-1)^(n-k)*A110506(n,k). - Philippe Deléham, Mar 24 2007
EXAMPLE
Triangle begins
1;
-1, 1;
3, -4, 1;
-13, 19, -7, 1;
67, -102, 44, -10, 1;
-381, 593, -278, 78, -13, 1;
MATHEMATICA
c[x_] := (1 - Sqrt[1 - 4x])/(2x);
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1/(1 + # c[-2#])&, # c[-2#]/(1 + # c[-2#])&, 10] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
CROSSREFS
Sequence in context: A123319 A076785 A110506 * A200659 A059110 A100326
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Nov 16 2005
STATUS
approved