login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T = A007318*A271703; T(n,m)= Sum_{i=0..n} L'(n,i)*binomial(i,m), m=0..n.
8

%I #46 Apr 17 2021 03:40:42

%S 1,1,1,3,4,1,13,21,9,1,73,136,78,16,1,501,1045,730,210,25,1,4051,9276,

%T 7515,2720,465,36,1,37633,93289,85071,36575,8015,903,49,1,394353,

%U 1047376,1053724,519456,137270,20048,1596,64,1,4596553,12975561

%N Triangle T = A007318*A271703; T(n,m)= Sum_{i=0..n} L'(n,i)*binomial(i,m), m=0..n.

%C L'(n,i) are unsigned Lah numbers (cf. A008297): L'(n,i)=n!/i!*binomial(n-1,i-1) for i >= 1, L'(0,0)=1, L'(n,0)=0 for n>0. T(n,0)=A000262(n); T(n,2)=A052852(n). Row sums A052897.

%C Exponential Riordan array [e^(x/(1-x)),x/(1-x)]. - _Paul Barry_, Apr 28 2007

%C From _Wolfdieter Lang_, Jun 22 2017: (Start)

%C The inverse matrix T^(-1) is exponential Riordan (aka Sheffer) (e^(-x), x/(1+x)): T^(-1)(n, m) = (-1)^(n-m)*A271705(n, m).

%C The a- and z-sequences of this Sheffer (aka exponential Riordan) matrix are a = [1,1,repeat(0)] and z(n) = (-1)^(n+1)*A028310(n)/A000027(n-1) with e.g.f. ((1+x)/x)*(1-exp(-x)). For a- and z-sequences see a W. Lang link under A006232 with references. (End)

%H Muniru A Asiru, <a href="/A059110/b059110.txt">Rows n=0..50 of triangle, flattened</a>

%H Marin Knežević, Vedran Krčadinac, and Lucija Relić, <a href="https://arxiv.org/abs/2012.15307">Matrix products of binomial coefficients and unsigned Stirling numbers</a>, arXiv:2012.15307 [math.CO], 2020.

%H <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>

%F E.g.f. for column m: (1/m!)*(x/(1-x))^m*e^(x/(x-1)), m >= 0.

%F From _Wolfdieter Lang_, Jun 22 2017: (Start)

%F E.g.f. for row polynomials in powers of x (e.g.f. of the triangle): exp(z/(1-z))* exp(x*z/(1-z)) (exponential Riordan).

%F Recurrence: T(n, 0) = Sum_{j=0} z(j)*T(n-1, j), n >= 1, with z(n) = (-1)^(n+1)*A028310(n), T(0, 0) = 1, T(n, m) = 0 n < m, T(n, m) = n*(T(n-1, m-1)/m + T(n-1, m)), n >= m >= 1 (from the z- and a-sequence, see a comment above).

%F Meixner type recurrence for the (monic) row polynomials R(n, x) = Sum_{m=0..n} T(n, m)*x^m: Sum_{k=0..n-1} (-1)^k*D^(k+1)*R(n, x) = n*R(n-1, x), n >=1, R(0, x) = 1, with D = d/dx.

%F General Sheffer recurrence: R(n, x) = (x+1)*(1+D)^2*R(n-1, x), n >=1, R(0, x) = 1.

%F (End)

%F P_n(x) = L_n(1+x) = n!*Lag_n(-(1+x);1), where P_n(x) are the row polynomials of this entry; L_n(x), the Lah polynomials of A105278; and Lag_n(x;1), the Laguerre polynomials of order 1. These relations follow from the relation between the iterated operator (x^2 D)^n and ((1+x)^2 D)^n with D = d/dx. - _Tom Copeland_, Jul 18 2018

%F From _G. C. Greubel_, Feb 23 2021: (Start)

%F T(n, k) = (n-1)!*binomial(n, k)*LaguerreL(n-1, 1-k, -1) with T(0, 0) = 1.

%F Sum_{k=0..n} T(n, k) = A052897(n). (End)

%e The triangle T = A007318*A271703 starts:

%e n\m 0 1 2 3 4 5 6 7 8 9 ...

%e 0: 1

%e 1: 1 1

%e 2: 3 4 1

%e 3: 13 21 9 1

%e 4: 73 136 78 16 1

%e 5: 501 1045 730 210 25 1

%e 6: 4051 9276 7515 2720 465 36 1

%e 7: 37633 93289 85071 36575 8015 903 49 1

%e 8: 394353 1047376 1053724 519456 137270 20048 1596 64 1

%e 9: 4596553 12975561 14196708 7836276 2404206 427518 44436 2628 81 1

%e ... reformatted. - _Wolfdieter Lang_, Jun 22 2017

%e E.g.f. for T(n, 2) = 1/2!*(x/(1-x))^2*e^(x/(x-1)) = 1*x^2/2 + 9*x^3/3! + 78*x^4/4! + 730*x^5/5! + 7515*x^6/6 + ...

%e From _Wolfdieter Lang_, Jun 22 2017: (Start)

%e The z-sequence starts: [1, 1/2, -2/3, 3/4, -4/5, 5/6, -6/7, 7/8, -8/9, ...

%e T recurrence: T(3, 0) = 3*(1*T(2,0) + (1/2)*T(2, 1) + (-2/3)*T(2 ,1)) = 3*(3 + (1/2)*4 - (2/3)) = 13; T(3, 1) = 3*(T(2, 0)/1 + T(2, 1)) = 3*(3 + 4) = 21.

%e Meixner type recurrence for R(2, x): (D - D^2)*(3 + 4*x + x^2) = 4 + 2*x - 2 = 2*(1 + x), (D = d/dx).

%e General Sheffer recurrence for R(2, x): (1+x)*(1 + 2*D + D^2)*(1 + x) = (1+x)*(1 + x + 2) = 3 + 4*x + x^2. (End)

%p Lprime := proc(n,i)

%p if n = 0 and i = 0 then

%p 1;

%p elif k = 0 then

%p 0 ;

%p else

%p n!/i!*binomial(n-1,i-1) ;

%p end if;

%p end proc:

%p A059110 := proc(n,k)

%p add(Lprime(n,i)*binomial(i,k),i=0..n) ;

%p end proc: # _R. J. Mathar_, Mar 15 2013

%t (* First program *)

%t lp[n_, i_] := Binomial[n-1, i-1]*n!/i!; lp[0, 0] = 1; t[n_, m_] := Sum[lp[n, i]*Binomial[i, m], {i, 0, n}]; Table[t[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* _Jean-François Alcover_, Mar 26 2013 *)

%t (* Second program *)

%t A059110[n_, k_]:= If[n==0, 1, (n-1)!*Binomial[n, k]*LaguerreL[n-1, 1-k, -1]];

%t Table[A059110[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 23 2021 *)

%o (GAP) Concatenation([1],Flat(List([1..10],n->List([0..n],m->Sum([0..n],i-> Factorial(n)/Factorial(i)*Binomial(n-1,i-1)*Binomial(i,m)))))); # _Muniru A Asiru_, Jul 25 2018

%o (Sage)

%o def A059110(n, k): return 1 if n==0 else factorial(n-1)*binomial(n, k)*gen_laguerre(n-1, 1-k, -1)

%o flatten([[A059110(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 23 2021

%o (Magma)

%o A059110:= func< n,k | n eq 0 select 1 else Factorial(n-1)*Binomial(n,k)*Evaluate(LaguerrePolynomial(n-1, 1-k), -1) >;

%o [A059110(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 23 2021

%Y Cf. A000262, A007318, A008297, A052852, A052897, A271703, A271705.

%K easy,nonn,tabl

%O 0,4

%A _Vladeta Jovovic_, Jan 04 2001