login
A130618
a(1)=1; a(n+1) = Sum_{k=0..a(n) mod n} a(n-k).
1
1, 1, 2, 4, 4, 12, 12, 35, 63, 63, 173, 368, 734, 1448, 2884, 5607, 11340, 16947, 39627, 79301, 118928, 271750, 543500, 1092066, 2184858, 4358317, 8727848, 17455759, 34911652, 61095259, 130918366, 244381036, 506138640, 1012353685, 2024551664
OFFSET
1,3
EXAMPLE
a(10) mod 10 = 63 mod 10 = 3. So a(11) = Sum_{k=0..3} a(10-k) = a(10) + a(9) + a(8) + a(7) = 63 + 63 + 35 + 12 = 173.
MAPLE
a[1] := 1; for n to 35 do a[n+1] := add(a[n-k], k = 0 .. `mod`(a[n], n)) end do; seq(a[n], n = 1 .. 35); # Emeric Deutsch, Jun 21 2007
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Sum[a[n-1-k], {k, 0, Mod[a[n-1], n-1]}]; Table[a[n], {n, 1, 50}] (* Vaclav Kotesovec, Apr 26 2020 *)
CROSSREFS
Cf. A057176.
Sequence in context: A376091 A319594 A065449 * A129882 A129017 A086915
KEYWORD
nonn
AUTHOR
Leroy Quet, Jun 18 2007
EXTENSIONS
More terms from Jon E. Schoenfield, Jun 21 2007
More terms from Emeric Deutsch, Jun 21 2007
STATUS
approved