login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130618
a(1)=1; a(n+1) = Sum_{k=0..a(n) mod n} a(n-k).
1
1, 1, 2, 4, 4, 12, 12, 35, 63, 63, 173, 368, 734, 1448, 2884, 5607, 11340, 16947, 39627, 79301, 118928, 271750, 543500, 1092066, 2184858, 4358317, 8727848, 17455759, 34911652, 61095259, 130918366, 244381036, 506138640, 1012353685, 2024551664
OFFSET
1,3
EXAMPLE
a(10) mod 10 = 63 mod 10 = 3. So a(11) = Sum_{k=0..3} a(10-k) = a(10) + a(9) + a(8) + a(7) = 63 + 63 + 35 + 12 = 173.
MAPLE
a[1] := 1; for n to 35 do a[n+1] := add(a[n-k], k = 0 .. `mod`(a[n], n)) end do; seq(a[n], n = 1 .. 35); # Emeric Deutsch, Jun 21 2007
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Sum[a[n-1-k], {k, 0, Mod[a[n-1], n-1]}]; Table[a[n], {n, 1, 50}] (* Vaclav Kotesovec, Apr 26 2020 *)
CROSSREFS
Cf. A057176.
Sequence in context: A376091 A319594 A065449 * A129882 A129017 A086915
KEYWORD
nonn
AUTHOR
Leroy Quet, Jun 18 2007
EXTENSIONS
More terms from Jon E. Schoenfield, Jun 21 2007
More terms from Emeric Deutsch, Jun 21 2007
STATUS
approved