This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130615 Sum of the first 10^n 4th powers. 1
 1, 25333, 2050333330, 200500333333300, 20005000333333333000, 2000050000333333333330000, 200000500000333333333333300000, 20000005000000333333333333333000000, 2000000050000000333333333333333330000000, 200000000500000000333333333333333333300000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Colin Barker, Table of n, a(n) for n = 1..50 Index entries for linear recurrences with constant coefficients, signature (111010,-1111110000,1011100000000,-10000000000000). FORMULA Sum of the first m fourth powers = m(m+1)(2m+1)(3m^2+3m-1)/30 (see A000538). From Colin Barker, Jun 14 2015: (Start) a(n) = A000538(10^n). a(n) = 2^(-5+n) * 5^(-6+n) * (-5000 + 4^(1+n)*5^(3+2*n) + 3*5^(2+3*n)*8^n+3*10^(4*n))/3. a(n) = 111010*a(n-1) - 1111110000*a(n-2) + 1011100000000*a(n-3) - 10000000000000*a(n-4). G.f.: x*(29480000000*x^3+349227000*x^2-85677*x+1) / ((10*x-1)*(1000*x-1)*(10000*x-1)*(100000*x-1)). (End) PROG (PARI) sumquartic(n) = { for(x=0, n, m=10^x; z=m*(m+1)*(2*m+1)*(3*m^2+3*m-1)/30; (print1(z", "))) } (PARI) Vec(x*(29480000000*x^3+349227000*x^2-85677*x+1) / ((10*x-1)*(1000*x-1)*(10000*x-1)*(100000*x-1)) + O(x^15)) \\ Colin Barker, Jun 14 2015 CROSSREFS Sequence in context: A046709 A179723 A174825 * A175741 A203090 A251227 Adjacent sequences:  A130612 A130613 A130614 * A130616 A130617 A130618 KEYWORD nonn,easy AUTHOR Cino Hilliard, Jun 18 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .