login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130615 Sum of the first 10^n 4th powers. 1
1, 25333, 2050333330, 200500333333300, 20005000333333333000, 2000050000333333333330000, 200000500000333333333333300000, 20000005000000333333333333333000000, 2000000050000000333333333333333330000000, 200000000500000000333333333333333333300000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Colin Barker, Table of n, a(n) for n = 1..50

Index entries for linear recurrences with constant coefficients, signature (111010,-1111110000,1011100000000,-10000000000000).

FORMULA

Sum of the first m fourth powers = m(m+1)(2m+1)(3m^2+3m-1)/30 (see A000538).

From Colin Barker, Jun 14 2015: (Start)

a(n) = A000538(10^n).

a(n) = 2^(-5+n) * 5^(-6+n) * (-5000 + 4^(1+n)*5^(3+2*n) + 3*5^(2+3*n)*8^n+3*10^(4*n))/3.

a(n) = 111010*a(n-1) - 1111110000*a(n-2) + 1011100000000*a(n-3) - 10000000000000*a(n-4).

G.f.: x*(29480000000*x^3+349227000*x^2-85677*x+1) / ((10*x-1)*(1000*x-1)*(10000*x-1)*(100000*x-1)).

(End)

PROG

(PARI) sumquartic(n) = { for(x=0, n, m=10^x; z=m*(m+1)*(2*m+1)*(3*m^2+3*m-1)/30; (print1(z", "))) }

(PARI) Vec(x*(29480000000*x^3+349227000*x^2-85677*x+1) / ((10*x-1)*(1000*x-1)*(10000*x-1)*(100000*x-1)) + O(x^15)) \\ Colin Barker, Jun 14 2015

CROSSREFS

Sequence in context: A179723 A174825 A269041 * A175741 A203090 A251227

Adjacent sequences:  A130612 A130613 A130614 * A130616 A130617 A130618

KEYWORD

nonn,easy

AUTHOR

Cino Hilliard, Jun 18 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 05:27 EST 2016. Contains 278761 sequences.