|
|
A130614
|
|
a(n) = p^(p-2), where p = prime(n).
|
|
2
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Number of labeled trees on p(n) nodes, where p(n) is the n-th prime.
Let p = prime(n). For n >= 2, (-1)^((p-1)/2) * a(n) is the discriminant of the p-th cyclotomic polynomial. - Jianing Song, May 10 2021
|
|
LINKS
|
|
|
FORMULA
|
For n >= 2, (-1)^((p-1)/2) * a(n) = A004124(p), where p = prime(n). - Jianing Song, May 10 2021
|
|
MATHEMATICA
|
|
|
PROG
|
(Magma) [n^(n-2) : n in [2..40] | IsPrime(n)];
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|