%I #21 Sep 08 2022 08:45:30
%S 1,3,125,16807,2357947691,1792160394037,2862423051509815793,
%T 5480386857784802185939,39471584120695485887249589623,
%U 3053134545970524535745336759489912159909
%N a(n) = p^(p-2), where p = prime(n).
%C Number of labeled trees on p(n) nodes, where p(n) is the n-th prime.
%C Let p = prime(n). For n >= 2, (-1)^((p-1)/2) * a(n) is the discriminant of the p-th cyclotomic polynomial. - _Jianing Song_, May 10 2021
%H Vincenzo Librandi, <a href="/A130614/b130614.txt">Table of n, a(n) for n = 1..77</a>
%F a(n) = A000272(A000040(n)).
%F For n >= 2, (-1)^((p-1)/2) * a(n) = A004124(p), where p = prime(n). - _Jianing Song_, May 10 2021
%t Table[Prime@n^(Prime@n - 2), {n, 20}] (* _Vincenzo Librandi_, Mar 27 2014 *)
%t #^(#-2)&/@Prime[Range[10]] (* _Harvey P. Dale_, Oct 18 2016 *)
%o (Magma) [n^(n-2) : n in [2..40] | IsPrime(n)];
%o (Magma) [p^(p-2): p in PrimesUpTo(50)]; // _Vincenzo Librandi_, Mar 27 2014
%o (PARI) a(n) = my(p=prime(n)); p^(p-2) \\ _Felix Fröhlich_, May 10 2021
%Y Cf. A000040, A000272, A004124, A036878.
%K easy,nonn
%O 1,2
%A _Jonathan Vos Post_, Jun 18 2007
%E Name edited by _Felix Fröhlich_, May 10 2021