Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Nov 20 2022 18:30:33
%S 3,11,41,359,109,13859,67391,276359,10036141,11057609,511057609,
%T 4528004891,35817391,194860036141,154261057609,1143030588859,
%U 6669469411141,35444788401359,349076695973641,982316442067391,3805192418629891,7047685094411141,190153153844411141,4915609391637379891
%N a(n) is the least prime p such that (p^2 - 6)/5^n is prime.
%H Robert Israel, <a href="/A358426/b358426.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n)^2-6 = 5^n * A358422(n).
%e a(3) = 359 because 359^2 - 6 = 128875 = 5^3 * 1031 where 359 and 1031 are prime, and no smaller prime works.
%p f:= proc(n) local v, a, b, k, p, q;
%p v:= 5^n;
%p a:= numtheory:-msqrt(6, v);
%p if a < v/2 then b:= v-a
%p else b:= a; a:= v-a
%p fi;
%p for k from 0 do
%p for q in [k*v+a, k*v+b] do
%p if isprime(q) then
%p p:= (q^2-6)/v;
%p if isprime(p) then return q fi;
%p fi
%p od od
%p end proc:
%p map(f, [$0..30]);
%Y Cf. A358422.
%K nonn
%O 0,1
%A _J. M. Bergot_ and _Robert Israel_, Nov 15 2022