OFFSET
1,3
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..200
Eric Weisstein's World of Mathematics, Path Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
Index entries for linear recurrences with constant coefficients, signature (0,0,1,1,1,1,0,-1,-1).
FORMULA
From Andrew Howroyd, Apr 15 2018: (Start)
a(n) = a(n-3) + a(n-4) + a(n-5) + a(n-6) - a(n-8) - a(n-9) for n > 9.
G.f.: x^2*(1 + 2*x + x^2 + x^3 + x^4 - x^5 - 2*x^6 - x^7)/(1 - x^3 - x^4 - x^5 - x^6 + x^8 + x^9).
a(2*n) = A000931(n+5)^2. (End)
MATHEMATICA
Table[If[Mod[n, 2] == 0, (RootSum[-1 - # + #^3 &, #^(n/2 + 5) (5 - 6 # + 4 #^2) &]/23)^2, (RootSum[-1 + # - 2 #^2 + #^3 &, #^((n - 1)/2) (4 - 2 # + 5 #^2) &] + RootSum[-1 + #^2 + #^3 &, #^((n - 1)/2) (-5 + 6 # + 3 #^2) &])/23], {n, 50}]
LinearRecurrence[{0, 0, 1, 1, 1, 1, 0, -1, -1}, {0, 1, 2, 1, 2, 4, 3, 4, 8}, 50]
CoefficientList[Series[(x (1 + 2 x + x^2 + x^3 + x^4 - x^5 - 2 x^6 - x^7))/(1 - x^3 - x^4 - x^5 - x^6 + x^8 + x^9), {x, 0, 50}], x]
PROG
(PARI) concat([0], Vec(x^2*(1 + 2*x + x^2 + x^3 + x^4 - x^5 - 2*x^6 - x^7)/(1 - x^3 - x^4 - x^5 - x^6 + x^8 + x^9) + O(x^50))) \\ Andrew Howroyd, Apr 15 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Apr 11 2018
EXTENSIONS
Terms a(20) and beyond from Andrew Howroyd, Apr 15 2018
STATUS
approved